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Abstract: 

Hyperspectral Image (HSI) data classification is a challenging task in remote sensing data 

analysis, which has been applied in many domains for better identification and inspection of the 

earth surface by extracting spectral and spatial information. Recent advances in neural networks 

have made great progress in the HSI classification. However, many traditional methods are 

based on handcrafted features, which brings difficulties for multi-classification tasks due to 

spectral intra-class heterogeneity, similarity of inter-class and higher model complexity. 

Consequently, conventional classifiers are not feasible to extract distinctive features. In order to 

improve the classification, this paper presented a hybrid neural network approach with 

pretrained DNN model with ANN based method. The performance of proposed classifiers is 

compared and found to be effective, Overall improvement in a classification performance is 

4.6% in comparison with existing methods. Though, this model could be applied and validated 

on geological mapping and urban investigation in terms of live hyperspectral image dataset. 

Keywords: convolutional neural networks; feature fusion; high spatial resolution; multilayer 

feature maps; hyperspectral band and image 
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1. Introduction 

Rapid technological advances have aided many key innovations in remote sensing in recent 

years, most notably hyperspectral remote sensing. In the remote sensing world, HSRRS-image-

based scene  
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Classification is gaining attention. Hyperspectral remote sensing has the ability to improve 

human perception of the earth's surface while also moving remote sensing forward. The spatial 

and spectral resolution of input datasets, however, determine the scale and accuracy of thematic 

maps. Because a picture's spatial and spectral resolutions are theoretically linked, one may be 

improved at the expense of the other. The extraction of scene-level discriminative characteristics 

is a vital step in scene classification since it bridges the large gap between an original picture 

and its semantic category. Researchers have developed a number of feature extraction 

techniques in recent years, which can be classified into three types: low-level methods, mid-level 

methods, and high-level methods. To deal with the spectral-spatial backdrop, deep learning 

techniques for HSI classification primarily focus on spectral-spatial background modelling 

[2][5][7][10]. 

 

This paper illustrates how to use machine learning and deep learning methods to quickly detect 

spatial and spectral features and extract them to enhance the classification accuracy of the HSI 

image dataset, which is available in spectral band and spectral image formats. One of the most 

important aspects of this research is how the classification accuracy varies when the two 

methods are combined. The main contribution of proposed system are:  

• Novel hybrid neural network approach using Pretrained 3D GSHT- ConvNet - MLPNNet 

feature extraction and classification framework. 

• Analyzing the impact of hybrid neural network approach on proposed hybrid approach. 

• Unified framework that can efficiently classify both hyperspectral data, i.e. spectral band 

and spectral image. 

 

The following is a breakdown of the structure of the paper. The related works are introduced and 

examined in section II then introduces the proposed methodology approach in section III. In 

Section IV, we'll look at and discuss an experimental implementation. Finally, Section V 

concludes this investigation and gives some reflections on the work. 

 

2. Related Work 

Based on the application of previous work, the primary classification techniques have been 

divided into handcrafted and automated characteristics in order to leverage second distinct 

statistics, which are further discussed in the next two paragraphs. 
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Based on the application of previous work, the basic categorization algorithms have been 

divided into handcrafted and automated features in order to leverage second different statistics, 

which are further addressed. A new supervised classification method proposed [1] based on 

second-order statistics computed from a deep neural network's output. The efficacy of three 

advanced classifiers, SAM, ANN, and SVM, assessed [2] in improving land use/land cover 

categorization using hyperspectral data. The use of Principal Component Analysis, Linear 

Discriminant Analysis, and a combination of the two are used to categorise HSI pictures [3]. The 

impact of dimension reduction on hyperspectral data classification systems is investigated [4]. A 

CTFCNN architecture developed [5] to properly utilise a pre-trained CaffeNet’s discriminant 

capability. To categorise the pixels of hyperspectral images, CNNs used [6] as an end-to-end 

pixelwise method. For remote sensing scene classification, a new lightweight remote sensing 

image categorization algorithm called Pruning Filter with Attention Mechanism proposed [7]. 

For enhanced modelling, an end-to-end architecture presented [8] for conducting band-specific 

spectral-spatial feature learning using a neural network. A simple and efficient complete 

convolutional network suggested [9] based on DenseNet as a classification method based on 

spatial and spectral data correlations.  

 

The LBP 1D-CNN model is suggested [10] for HSI classification.  A one-class ensemble 

employing SVM and KNN developed [11] based self-training algorithms for semi-supervised 

categorization of HSI data. A strategy that combines convolutional layer feature extraction 

developed [12] with ASMLR classification performance. A multi-size picture training approach 

suggested [13] based on a network training strategy. A Multiscale and Multiangle convolutional 

neural network (MSMA-CNN), introduced [14] which extracts deep information from RS pictures 

using several discriminants, nonlinear, and invariant convolutional, pooling, and fully connected 

layers. A Neural Network introduced [14] to examine how to classify hyperspectral images. A 

novel SVM-based classification strategy was introduced [16]. A multi-scale local binary patterns 

features and Fisher vectors-based image representation technique introduced [14] for remote 

sensing image scene classification. The performance of common aerial scene categorization and 

deep learning methods on AID, compared [18] which might be used as a benchmark. A model 

suggested [19] based on the rotational invariant local binary pattern method and a one-

dimensional convolutional network (1D-CNN) applied across the histograms. 

 

3. Proposed Methodology 
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A pretrained 3D ConvNet-based feature extraction framework with machine learning classifier is 

proposed to extract the discriminating information in hyperspectral images to improve 

classification performance. The pretrained 3D ConvNet technique captures two types of features 

from fully connected layers using a pre-trained Inception V3 and VGG16 networks with/without 

feature reduction techniques using ICA. Furthermore, machine learning classification operations 

employing two classifiers, Support Vector Machine Network (SVMNet) and Multi-Layer 

Perceptron Neural Network (MLPNNet) with Grid Search Hyper-tuning, are employed to get an 

effective prediction of Grid Search Hyper-tuning (GSHT). The block diagram of the proposed 

framework is shown in Figure 1. 

 

3.1 Hyperspectral Dataset, Dataset Splitting 

The hyperspectral dataset, which can be found in the Live Aerial Image Hyperspectral Dataset, is 

made up of spectral pictures, which are two-dimensional vectors of pixels in picture format. The 

framework's implementation is divided into two phases: training and testing, with the dataset 

requiring a 70-30 percent split in the number of samples for this process.  

 

3.2 Feature Engineering  

Feature engineering is the pre-processing step of machine learning, which extracts features from 

raw data. Pre-processing for the spectral band include extracting pixels and ground truth data 

from raw 

 

Figure 1: Proposed framework for HSI classification 
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data, as well as scaling, or picture resizing, for the spectral image. In feature extraction, feature 

fusion of two pretrained 3D Conv Net models, inception V3 and VGG 16, is used. Figure 2 shows 

a detailed diagram of the Inception V3 and VGG 16 network layer design. There are four levels to 

this model: input, feature, classification, and output. This fusion layer is used to generate the 

input and feature layers, with the feature layer supplying low to high level features that define 

the input's spatial and spectral qualities, arranged in a hierarchy from low to high level features. 

Low-level features include edges and blobs, whereas high-level features include objects and 

events. Low-level feature extraction is done with signal/image processing techniques, whereas 

high-level feature extraction is done with machine learning approaches. Picture details such as 

lines or dots that can be recognised using a convolutional filter (for genuinely low-level stuff), 

SIFT, or HOG, for example, are examples of low-level features (for more abstract things like 

edges). High-level characteristics are placed on top of low-level features to recognise objects 

and larger shapes in the image. Convolutional neural networks incorporate both types of 

features: the first few of layers generate filters for finding lines, dots, curves, and other objects, 

while the latter layers learn to recognise common objects and patterns. They're so low-level 

because they respond to edges/gradients and corners, which are both low-level visual 

processing features. Using ICA, features are optimised or lowered after being extracted from 

these layers. ICA is an abbreviation for Independent Components Analysis. ICA is a technique for 

partitioning a dataset into columns of independent components in order to reduce its size. It 

posits that each data sample is made up of a number of independent components, and it seeks 

to identify these components. 

 

Figure 2: Architecture of Feature Fusion Layer 
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3.3 Model Learning, Validation, Evaluation 

In classification, the GSHT-SVMNet and GSHT-MLPNNet networks are utilised, with the GSHT 

principle being applied to obtain maximum accuracy with K-fold validation, i.e. K=10. The 

process of fine-tuning hyperparameters to discover the optimum values for a given model is 

known as grid search. Because the hyper parameter values given impact the model's overall 

performance, this is critical. The trained model predicts the output label for the provided dataset 

after successful validation. Below is the recommended framework implementation algorithm. 

Given a set of training samples with x1,…xn as fused features of HSI data and y1,y2,….yn as 

ground truth label HSI data  

(x1, y1) (x2, y2), ………(xn, yn) 

Where, 

 Xi Є R
n
 and yi Є{0,1} 

 𝑓(𝑥) =W2 g(W1 
T 

x + b1 ) + b2 

Where,  

 W1 Є R
m

 

 W2,  b1, b2 Є  R  are model parameters 

 W1 and W2 are weights of input layer and hidden layer  

 b1, b2  represent the bias added to the hidden layer and the output layer respectively 

g(.) : R -> R is this activation function set by hyperbolic tan 

  g(z) = 
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒𝑧
 

for binary classification f(x) passes through the logistic function 

If there are more than two classes, f(x) will be of vector size (in_class).  

It passes through softmax function which is  

Softmax(zi) = 
exp⁡(𝑧𝑖)

∑ exp⁡(𝑧𝑖)𝑘
𝑙=1

 

Where, 

 zi: the ith element of the input of the softmax 

In gradient descent,  

 

Where, 

        i : iteration step  

  Є : learning rate 

3.4 Algorithm 



Vol.29 计算机集成制造系统 ISSN 

No. 5 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
38 

Algorithm Steps: 

Input: 

Training and Testing instance set S, a vector of feature values and the class i.e. label value 

Feature Set, F(i) = {f1(i), f2(i), f3(i), …… . , f1(i)}                                   

Hyperspectral dataset expressed as, X = [X1,X2,X3,, ………… . XL,]
T⁡ϵ⁡⁡RL(M⁡x⁡N)……… . . (i) 

where, 

X: Hyperspectral input dataset 

L: Number of bands / Number of images per class 

M x N: Number of samples in each band 

R: Hyperspectral output class 

Label Set, L(i) = {Spectral Band Classes and Spectral Image Label} 

Initialization: 

1. Collect and Prepare feature data and label data from raw dataset values from Spectral Band 

and Spectral Image Dataset. 

Feature Engineering Phase: 

2. For each feature data  

    Calculate the normalized value of all features set. Scale the all-feature data into specific 

range. 

    Parameter Hyper tuning Phase 

    Define the model for ML Classifiers. 

3. Define the range of possible value for all hyperparameters of ML algorithms. 

4. Sampling of hyper parameters values using Grid Search CV Function. 

5. Evaluate and find the best score among all hyper parameters value. 

6. Validate the model using K-Fold Validation Learning Method. 

           Feature set:⁡Ffused = {f1⁡,f2} = f(X) ……………………(ii) 

           Where, 

                f1 : features obtained by VGG16 network 

                f2: features obtained by Inception V3 network 

Foptimized = ICA⁡(Ffused) ………………… (iii) 

{
f1
f2
} ∈ S(i, j) ………………………… . . . … (iv) 

S(i, j) = ⁡∑∑(m, n)k(i − m, j − m)…… (v)

nm

 

        ReLu and Pooling layer: 

        Classifier: 
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        ⁡CF = Classifier⁡(Ffused) …………… . (vi) 

Training Phase: 

7. Initialize the parameter tuned for ML model of ML Classifiers. 

8. Initialize the feature data and label data for training dataset. 

9. Train the model for respective ML algorithms. 

10. Validate the model performance using K-fold cross validation method. 

11. If validation successful then save the trained model TMrf, TMmlp and if not the repeat from 

step 8. 

Testing Phase: 

12. Initialize the feature data for testing dataset. 

13. Load the trained model of ML algorithms. 

14. Predict the results whether its Spectral Band Class and Spectral Image Label. 

15. Plot Confusion matrix between Actual Label Data and Predicted Label Data to check system 

accuracy. 

Evaluation Phase: 

16. Evaluate performance of classification model C, Confusion Matrix Parameters based TP, FP, TN 

and FN, Accuracy, Kappa Score and MCC. 

 

4. Experimental Results And Discussion 

Dataset Description 

Spectral Band Dataset (IP and UP) 

There are two spectral band dataset used in this project. Indian Pines (IP) and University of Pavia 

(UP). The Indian Pines scene contains two-thirds agriculture, and one-third forest or other 

natural perennial vegetation. There are two major dual lane highways, a rail line, as well as some 

low-density housing, other built structures, and smaller roads. This scene was gathered by 

AVIRIS sensor over the Indian Pines test site in North-western Indiana and consists of 

145\times145 pixels and 224 spectral reflectance bands in the wavelength range 0.4–2.5 10^(-6) 

meters. The ground truth available is designated into sixteen classes and is not all mutually 

exclusive. In University of Pavia, these is the scene acquired by the ROSIS sensor during a flight 

campaign over Pavia, northern Italy. The number of spectral bands is 103 for Pavia University.  

Pavia University is 610*610 pixels, but some of the samples in the images contain no information 

and have to be discarded before the analysis. The geometric resolution is 1.3 meters. Image 

ground truths differentiate 9 classes each. It can be seen the discarded samples in the figures as 

abroad black strips. 
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Spectral Image Dataset (AID) 

Google Earth imagery from the Mumbai and Pune subregions was used to compile the 

collection. The spatial resolution of the photo’s ranges from 0.5 m to 8 m, and each scene 

contains 500x500 pixels. There are 700 photos in total in the collection, which are classified into 

seven semantic groups. The total amount of scene photographs in each class, which includes 

airports, beaches, forests, mountains, railway stations, rivers, and stadiums. 

 

 

 

c) 

Figure 3: Ground truth images of (a) Indian Pines and (b) Pavia University C) AID datasets. 

 

4.2 Experimental Setup 

All experiments were performed on a laptop equipped with 16-GB memory, i5-8500 CPU, and 

64-bit Windows 10 with python as programming language. The anaconda distribution with 

Keras, Tensorflow and Scikit learn toolbox was employed to exact different features and 

classification. 
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4.3 Performance Analysis 

The classification efficiency measure is constructed from a confusion matrix that provides the 

result of counting correctly and incorrectly identified cases by event class (normal / abnormal). 

Therefore, some statistically defined measurements are taken into account and used as the basis 

for comparative analysis of classifiers. There are four basic metrics used in the confusion matrix 

to describe performance measurements. True positive (TP). Represents the number of correct 

positive predictions found in the hyperspectral band or image test set. True Negatives (TN), 

representing a set of correct negative predictions within a hyperspectral band or image test set. 

False positives (FP). Represents the number of false positive predictions in the hyperspectral 

band or image test set. False Negative (FN), which represents the number of false negative 

predictions in a hyperspectral band or image test set. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) 

Precision  = 𝑇𝑃/(𝑇𝑃+ 𝐹P) 

Recall  = 𝑇P/(𝑇P+𝐹N) 

MCC = (TP*TN) – (FP*FN) / sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN)) 

where, TP – true positive, TN – true negative, FP – false positive, FN – false negative 

 

The live aerial dataset is examined related to spectral images for categorization in this 

experiment. The dataset is divided into two sections for training and testing. The training set 

contains 70% of the original data matrix, whereas the independent test set has 30%. The grid 

search hyperparameter optimization approach, as indicated in table 1, is employed in our 

experiment to optimize the parameters of the classifier model. From the confusion matrix 

parameters, the accuracy, precision, recall, f-score, Matthews Correlation Coefficient (MCC), and 

Kappa Score parameters are assessed and displayed in table 2-6. Also, comparison with existing 

state of art methods also described in table 7 and its representation is given in fig 4. 

 

Table 1: Grid Search Hyperparameter for training of classifiers 
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Table 2 depicts that accuracy is better in case of spectral band dataset using both classifiers, 

GSHT-SVMNet and GSHT-MLPNet than spectral image dataset. But in case of proposed PT-3D-

GSHT approach using both classifier SVMNet and MLPNNet, spectral band and spectral image 

datasets found to be effective in term of accuracy performance due to the rich feature 

representation of PT-3D-Conv-Net model. Similarly, it is found that from Table 3-4, proposed 

PT-3D-GSHT framework is effective for all types of datasets.    

 

Table 2: Accuracy Performance of classifiers on both datasets 

Dataset

s 

Framewo

rk 
Hyper-parameter tuning 

IP 

PT-3D-

GSHT-

SVMNet 

C=10, cache_size=1024, 

kernel='poly', 

probability=True 

PT-3D-

GSHT-

MLPNNet 

alpha=1e-05, 

max_iter=1000, 

random_state=500 

UP 

PT-3D-

GSHT-

SVMNet 

C=10, cache_size=1024, 

kernel='poly', 

probability=True 

PT-3D- alpha=1e-05, 
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GSHT-

MLPNNet 

max_iter=1000, 

random_state=500 

AID 

PT-3D-

GSHT-

SVMNet 

activation='relu', 

alpha=1e-05, 

batch_size='auto',  

beta_1=0.9, beta2=0.99, 

epsilon=1e-08, 

hidden_layer_size=100,  

learning_rate='constant',  

max_fun=15000, 

max_iter=1000, 

random_state=500 

PT-3D-

GSHT-

MLPNNet 

activation='relu', 

alpha=1e-05, 

batch_size='auto',  

beta_1=0.9, beta2=0.99, 

epsilon=1e-08, 

hidden_layer_size=100,  

learning_rate='constant',  

max_fun=15000, 

max_iter=1000, 

random_state=500 

 

Table 3: Precision Performance of classifiers on both datasets 

Datasets 

GSHT-

SVM-

Net 

(%) 

GSHT- 

MLPNet 

(%) 

PT-3D-

GSHT-

SVM-

Net (%) 

PT-3D-

GSHT- 

MLPNNet 

(%) 

University 

of Pavia 

(Spectral 

Band) 

89 95 92 97 

Indian 81 84 78 87 
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Pines 

(Spectral 

Band) 

AID 

(Spectral 

Image) 

27 32 88 90 

 

Table 4: Recall Performance of classifiers on both datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, as described in Table 5, kappa score is found to be much better for University of Pavia, 

spectral band dataset as compared to other datasets. But kappa score for proposed PT-3D-

GSHT-MLPNNet classifier indicates that how closely the instances classified by the classifier 

matched with the data labeled as ground truth. 

 

Datasets 

GSHT-

SVM-

Net (%) 

GSHT- 

MLPNet 

(%) 

PT-

3D-

GSHT-

SVM-

Net 

(%) 

PT-3D-

GSHT- 

MLPNNet 

(%) 

University 

of Pavia 

(Spectral 

Band) 

83 92 84 94 

Indian 

Pines 

(Spectral 

Band) 

75 80 76 82 

AID 

(Spectral 

Image) 

23 27 82 87 
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In table 6, MCC performance is found to be effective for two types of datasets using PT-3D-

GSHT-MLPNNet as compared to PT-3D-GSHT-SVMNet. It indicates that how all the parameters 

of confusion matrix is effectively categorized. 

 

Table 5: Kappa Score Performance of classifiers on both datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: MCC Performance of classifiers on both datasets 

Datasets 

GSHT-

SVM-

Net 

(%) 

GSHT- 

MLPNet 

(%) 

PT-

3D-

GSHT-

SVM-

Net 

(%) 

PT-3D-

GSHT- 

MLPNNet 

(%) 

University 

of Pavia 

(Spectral 

84 93 85 95 

Datasets 

GSHT-

SVM-

Net 

(%) 

GSHT- 

MLPNet 

(%) 

PT-

3D-

GSHT-

SVM-

Net 

(%) 

PT-3D-

GSHT- 

MLPNNet 

(%) 

University 

of Pavia 

(Spectral 

Band) 

86 92 88 95 

Indian 

Pines 

(Spectral 

Band) 

82 82 76 86 

AID 

(Spectral 

Image) 

30 34 87 88 
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Band) 

Indian 

Pines 

(Spectral 

Band) 

76 81 78 84 

AID 

(Spectral 

Image) 

22 28 84 88 

 

Table 7: Result Comparison with State of Art Techniques 

Dataset References Accuracy 

University 

of Pavia 

(Spectral 

Band) 

OCESS [11] 0.8697 

PCA, SVM  [16] 0.9102 

PT-3D-GSHT- 

MLPNNet 

(Proposed 

framework) 

0.96 

Indian 

Pines 

(Spectral 

Band) 

PCA+LDA, SVM 

[3] 
0.8251 

LBP, SVM  [10] 0.8241 

OCESS [11] 0.7984 

PT-3D-GSHT- 

MLPNNet 

(Proposed 

framework) 

0.85 

AID 

(Spectral 

Image) 

MCBGP + E-

ELM [17] 
0.86 

ResNet [18] 0.85 

PT-3D-GSHT- 

MLPNNet 
0.89 
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(Proposed 

framework) 

 

 

Figure 4: accuracy performance of existing state of art method 

 

The performance of proposed method is compared to existing state-of-the-art algorithms as 

described in table 7. Though researchers have classified hyperspectral data using various model 

techniques for three datasets UP, IP and AID, it is found that the proposed framework is efficient 

in terms of accuracy parameters due to hybrid neural network approach in which rich 

information of features are extracted using PT-3D-ConvNet and classification is performed using 

MLPNNet.  

 

5. Conclusion 

In this paper, a hybrid neural network framework for spectral band and spectral image datasets 

is presented, which combines machine learning and deep learning to fully exploit the 

discriminant feature extraction power of a pre-trained deep neural network model as well as the 

classification capabilities of neural network classifier models. The feature extractor in this 

framework uses features from deep neural network with fusion of both pretrained models 

VGG16 and InceptionV3 to collect multilayer convolutional features and features from the fully 

connected layer. Finally, weighted concatenation is used to integrate these features. As a result, 

the proposed system can generate hyperspectral aerial picture representations while also 

improving scene categorization accuracy. Experiments performed on hyperspectral data spectral 

band and spectral image show that the proposed method with pretrained feature using hybrid 

neural network outperforms existing conventional feature methods in terms of overall accuracy, 

with the highest OAs achieved for University of Pavia, Indian Pine both spectral band dataset 

and AID, spectral Image dataset being 0.96, 0.85, and 0.89, respectively. To increase classification 

0

1
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lu
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Proposed framework



Vol.29 计算机集成制造系统 ISSN 

No. 5 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
48 

performance, we'll incorporate fine-tuning algorithms and focus on combining variables from 

diverse regions of interest (ROIs) with large dataset combining unsupervised approach in the 

future. Despite the proposed model's enhanced performance in the spatial-spectral domain of 

hyperspectral data, more research into how the technique might be improved is needed with 

help of deep learning. Future study will also include an analysis based on the concatenation of 

separate chains of pretrained CNN models. 
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