
Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
214

Web Interface for Distributed Transaction System
Suraj Godage, T Rohith Kumar, Hardik Pandya, Shubham Bhosale, Rushali Patil
1,2,3,4,5 dept. of computer engineering Army Institute of Technology.

Abstract:

This research delves deep into the saga pattern, which proves to be an effective approach for

managing local se- quential transactions across distributed microservices. However, the problem

of isolation lacking in the saga pattern can result in incorrect commits on databases due to

unfinished transactions. To address this issue and further enhance existing solutions like

transaction management protocols (e.g., two-phase commit), this study introduces innovative

enhancements, namely quota cache and commit-sync service. These enhancements enable

specific operations between database layers, effectively preventing invalid or incomplete

commitments on the main databases. An experi- mental test was conducted to evaluate and

check the effectiveness and performance of a microservices-based e-commerce system,

revealing that this novel approach successfully handled both regular scenarios and exceptions,

addressing isolation concerns. In the event of service failures, compensation transactions were

executed to undo adjustments made solely within the caching layer. After ensuring all processes

were correctly completed, the alterations were committed back into the database. Although

promising results were observed, further investigation is required for optimization before

widespread adoption as an industry- standard approach.

Keywords: microservices, distributed transaction, two-phase commit, SAGA.

DOI: 10.24297/j.cims.2023.14

1. Introduction

When building a website using a microservice architecture, it is crucial to implement distributed

transaction patterns to ensure smooth and efficient transaction handling across the system[1].

However, migrating an application from a monolith to a microservice architecture is an intricate

undertaking that demands substantial time, effort, and careful consideration. It is a multifaceted

process that is prone to errors, making it imperative to employ appropriate tools that facilitate

and guide the decomposition process [2][3]. And hence to build a robust E-commerce website,

leveraging Microservices de- veloped with NodeJS in the backend is highly recommended REST

APIs will facilitate seamless connection between these Microservices. Proper event handling,

including buy- ing, completion, and failure scenarios, requires the utilization of message queue

middleware. while effective transaction management across multiple services necessitates the

use of Orchestration approach of SAGA pattern [4][5].These message queues, coupled with a

http://cims-journal.com/index.php/CN/article/view/932

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
215

SAGA-based quota-cache database connected through REDIS server technology, significantly

enhance system throughput. By employing a commit sync pattern, optimal performance results

can be achieved, ensuring efficient event processing and isolation handling within the system[6].

The SAGA pattern proves to be effective for managing distributed transactions in microservices.

But the current SAGA pattern faces issue of lack of isolation, which states that reading and

writing from uncommitted transaction is not prohibited in it. And hence enhancing the SAGA

pattern with queue middleware and a quota cache database server becomes essential to

prevent issues like uncommitted reads and writes, ensuring data consistency and reliability

throughout the microservices architecture[8][9].

2. Proposed Methodology

The system is composed of five microservices, namely the WarehouseService, OrderService,

BillingService, Ship- pingService, and CustomerService. Each microservice has its own dedicated

database. Leveraging the power of NodeJS technology, these microservices were developed,

inheriting and implementing the relevant use cases seamlessly [10][11]. Communication with the

microservices occurs through a REST API, utilizing the simplicity and versatility of the HTTP

protocol. This architecture ensures modularity and allows for efficient interaction between the

different components, enabling the system to scale and evolve effectively[12][13]. This system

offers users a seamless online purchasing ex- perience, enabling them to select desired

products, payment methods, and preferred shipping options. Comprised of es- sential

components such as WarehouseService, OrderService, BillingService, and ShippingService,

among others, the system supports long transactions with the flexibility of both Ware-

houseBeforeBilling and BillingBeforeWarehouse approaches, as illustrated in the Figure 1.

The flow commences with Warehouse Services procuring goods, which are subsequently stored

as ”IN PROGRESS” orders in the Order services. This paper outlines a comprehen- sive process

for placing and fulfilling orders, starting with the retrieval of items. If the item retrieval fails, the

placed order is tagged as ”FAILED.” The subsequent step involves payment validation by the

Billing Service. Upon successful payment, the transaction is processed, while any payment failure

halts the flow at this stage. To facilitate efficient event processing, the system leverages a

message broker middleware namely apache kafka which is also an open source software [18].

Kafka enables the publishing and listening of message streams, capable of handling numerous

number of messages per second, thereby supporting high throughput applications.

Additionally, Kafka’s durability feature ensures message persistence by storing them on disk

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
216

[19]. Overall, the described process and technology stack illustrate a robust framework for

managing e- commerce orders, emphasizing fault tolerance, scalability, and reliable event

streaming capabilities [20].

The message queue apache kafka middleware plays a crucial part in managing both failure and

completion events within a distributed event based architecture. It enables seamless mes- sage

sending and also message receiving between and among all the microservices while maintaining

the order of requests for accurate final commitment. Various forms of message queue

middleware were utilized, with Apache Kafka serving as the central component. This middleware

effectively handles potential exceptions that may arise from failures during the process,

particularly when service validation is necessary.

The introduction of an in-memory quota cache proves to be a valuable addition to the

microservices architecture. It opti- mizes data access by providing faster retrieval of frequently

used data, thereby reducing the reliance on frequent database access. However, in the event of

any issues during Warehouse- Service actions that could potentially affect the main database

and impact client orders, compensation transactions are swiftly deployed to undo these changes

and cancel the order.

The implementation proposes an in-memory quota cache can significantly enhance the

performance and reliability of microservices-based systems. It can be customized to cater to the

specific requirements of different applications. In the improved version, the CRUD (Create, Read,

Update, Delete) operations have been shifted from the primary database layer to an

intermediate cache tier. This relocation further optimizes system performance and reinforces

reliability within the mi- croservices architecture.

In computational contexts, caches serve as advanced data storage components that significantly

reduce access time to primary memory systems. Among the different cache tech- niques, quota

caching stands out as an effective in-memory databasing approach. It ensures the accuracy of

read and write operations through CRUD actions, preventing any potential

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
217

Fig. 1. State Diagram

incorrect commit disasters that could affect the main database. By implementing a cache

system, overall performance is maximized by minimizing latency across multiple databases or

services.

This paper introduces the implementation of an in-memory quota cache, specifically designed

to enhance the performance of microservices. Compared to the baseline implementation using

the saga pattern, the proposed in-memory quota cache demonstrates improved performance

and efficiency. By lever- aging the benefits of cache systems, microservices can achieve faster

access to data, reduced latency, and optimized resource utilization. Overall, the utilization of an

in-memory quota cache in microservices architecture presents a promising solu- tion for

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
218

maximizing performance and ensuring data accuracy. By freeing the main database from

incorrect commit disasters and leveraging the power of cache technology, this approach offers

significant improvements in the overall performance of microservices- based systems.

3. Result

A. Test 1 : Evaluating the SAGA in use case 1

To comprehensively assess the Baseline Standard System’s capabilities, we conducted Test 1,

focusing on Use case 1. As per the SAGA pattern’s guidelines, the orchestrator module

assumes responsibility for capturing the crucial ”buy-event” [14][15]. Subsequently, the

respective microservices come into play, seamlessly managing the event processing workflow. In

strict adherence to the pattern, the WarehouseService takes the lead in the initial stage by

meticulously retrieving the precise amount of goods required. This critical operation unfolds

within the database, as denoted by the distinctive ”logger name” field [16][17]. Continuing

with remarkable precision, the OrderService takes charge, skillfully initiating the order process.

Building upon this momentum, the BillingService enters the stage, expertly executing payment

validation. Should the validation encounter any hiccups, the workflow promptly concludes, and

the order assumes the ”FAILED” status.

Fortunately, in this particular Use case, the validation pro- ceeds without a hitch, ensuring a

flawless sequence of events. Moving into the next phase, the BillingService diligently collects the

requisite payment, instilling trust and confidence in the transaction. Once this financial

milestone is firmly established, the ShippingService springs into action, promptly dispatching

the eagerly anticipated delivery in accordance with the customer’s preferences. Lastly, the

OrderService meticulously finalizes the order, leaving no detail unattended. From updating the

order status to recording the shipment ID, quantity, and overall order status, every aspect is

diligently managed to ensure a comprehensive and satisfactory customer experience. This

meticulous evaluation of the Baseline Stan- dard System in Use case 1 highlights its remarkable

effective- ness in orchestrating a flawless and error-free order processing flow. By seamlessly

coordinating the various microservices, this standardized approach showcases its inherent

reliability and aptitude for delivering impeccable results.

B. Test 1: Testing the Optimized System with Use case 1

In the enhanced SAGA pattern, Steps 1 and 2 exhibit a striking resemblance to the original SAGA

implementa- tion, with the WarehouseService and BillingService embracing the suggested

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
219

approach. However, significant enhancements have been introduced. One notable improvement

lies in the utilization of Redis, an in-memory cache, for data access instead of relying solely on

the database. This innovative approach eradicates the necessity for transactions on the primary

database during these processes, leading to enhanced efficiency and performance. By

leveraging Redis as the data store, the system achieves optimal speed and responsiveness,

ultimately resulting in a more streamlined and robust execution of Steps 1 and 2 in the SAGA

pattern. To provide a visual representation, Figure 2 illustrates the initial request of items the

customer wishes to purchase. This request is received in the Kafka message broker,

accompanied by crucial details such as product ID, quantity, customer ID, price, and rating, as

depicted in Figure 3.

Fig. 2.

Fig. 3.

Step 1 entails the WarehouseService checking the availabil- ity of the desired items in stock, as

illustrated in Figure 4. If the items are available, the warehouse-check status is updated as

”true”; otherwise, it is marked as ”false.” The updated warehouse-check status is then

transmitted as a message via the Kafka message broker, as showcased in Figure 5.

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
220

Fig. 4.

Moving on to Step 2, the message received in Figure 5 is forwarded to the OrderService, where a

unique order ID is assigned to the requested order, as demonstrated in Figure 6. Subsequently,

the message, now containing the unique order ID, is published in the Kafka message broker, as

depicted in Figure 7.

Step 3 commences with the initiation of the BillingService. In this phase, payment validation

transitions from the database to the in-memory cache. The payment status is updated as

”true” if the payment is successfully processed, and ”false” otherwise, as illustrated in Figure

8. A message is then

Fig. 5.

Fig. 6.

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
221

Fig. 7.

published in the message broker, carrying the payment status to the Shipping microservice, as

shown in Figure 9.

Fig. 8.

Finally, Step 4 involves the ShippingService, which verifies the payment status and warehouse

status. Only if both condi- tions are true, the order is confirmed, shipped, and marked as a

success. The order status is updated accordingly, with the

Fig. 9.

shipping status marked as ”dispatched,” as demonstrated in Figure 10. After the task is

finished, the orchestrator module promptly dispatches the completion event to the designated

message broker. Upon receipt of the ”completion-event” mes- sage, both the

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
222

WarehouseService and BillingService swiftly initiate the specified transactions, directly

interacting with the database. It is worth highlighting that both the Warehous- eService and

BillingService have seamlessly transitioned their update processes to the in-memory cache.

Consequently, upon receiving the completion event message, they efficiently carry out the

required transactions on the database without delay, ensuring optimal performance and

streamlined operations. This improved implementation of the system, as demonstrated in Test 1,

showcases the improved efficiency and performance achieved by leveraging the improved Saga

pattern. By in- tegrating advanced technologies and optimizing data access, the system achieves

seamless coordination and execution of transactions, ensuring a robust and reliable order

processing workflow.

Fig. 10.

C. Test 2: Testing the Saga with Use case 2

This Test aims to showcase the event processing capabilities of an e-commerce microservices-

based system, specifically focusing on a payment exception Use case. Both versions of the

system will be tested using the same workflow steps outlined by the standard saga pattern. In

the first two phases, the system retrieves the required products and sets up the order, following

the standard saga pattern. However, a significant deviation occurs in Step 3, where an

excessively high sum is supplied, surpassing the consumer’s affordability. As a result, the

payment validation fails, triggering an exception in the process. To effectively address this

exception, the system incorporates rollbacks in Step 4, which initiate the process of reverting the

fetched products to their original state. By executing these rollbacks, the OrderService ensures

that the order is completed, albeit marked as unsuccessful. This meticulous approach

guarantees data consistency and integrity by maintaining the integrity of the fetched products

and upholding the system’s overall reliability.

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
223

Fig. 11.

D. Test 2: Testing the Optimized System with Use case 2

In the optimized system, the initial phases mirror those of the baseline standard version. The

order request is received in message form through the Kafka message broker, which forwards it

to the WarehouseService. The WarehouseService checks its database for product availability,

updates the ware- house status accordingly, and publishes a message in the message broker,

which is subsequently routed to the OrderSer- vice. As demonstrated in the previous Test, the

OrderService assigns a unique order ID to the requested order. Step 3 commences with the

initiation of the BillingService, where payment validation transitions from the database to the in-

memory cache.

As per the defined test Use case, the payment status is updated as ”false,” necessitating the

execution of compen- sating transactions. Figure 11 visualizes this update and the subsequent

publishing of a message in the Kafka message broker. In Step 4, as illustrated in Figure 12, the

retrieval of items from the WarehouseService is highlighted, utilizing a GET request. The

retrieved data is then stored in the Redis cache server, effectively caching it for subsequent

transactions. Notably, these subsequent transactions operate solely on the data stored in the

Redis cache database server, bypassing the database entirely. By employing the improved saga

pattern, the Optimized System ensures robustness and flexibility in handling exceptional Use

cases, such as payment exceptions. Through efficient data caching and localized transactions,

the system guarantees data consistency while providing an optimized and resilient order

processing workflow.

Upon closer examination of the timestamps in the last two steps, a remarkable similarity

becomes evident, suggesting that the system effectively transmitted the failure event and

concluded the order simultaneously. This synchronization is depicted visually in Figure 13,

illustrating how the Warehous- eService adeptly utilizes the in-memory cache to compensate for

the fetched products, all while ensuring the integrity of the original database remains

unaffected. It is worth noting that the logs provide supporting evidence that the enhanced

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
224

Fig. 12.

recommended solution excels at handling exceptions and elim- inates the necessity for rollbacks

to the database in the event of errors.

4. Conclusion

This paper introduces a novel solution that harnesses the power of temporary commit sync

services and caches, ef- fectively transferring transactions from the database layers to the

memory layers. By adopting this approach, the solu- tion ensures secure and reliable execution

of CRUD (create- read-update-delete) operations, significantly mitigating the risk of incorrect

commits on the primary databases. Embracing this method within the saga pattern guarantees a

robust and consistent operation, reducing the likelihood of conflicts and errors. Node.js is

known for its single-threaded nature, which simplifies the management of multiple threads.

Unlike the Spring Boot world, where Java web applications typically run on multiple threads,

Node.js relieves you from the com- plexities associated with thread management and hence this

research delas with building the existing enhanced saga using NodeJS as bakcend framework

instead of previous research that used spring boot [21]. we have meticulously conducted

extensive research and testing to showcase the solution’s efficacy, emphasizing its potential

benefits for the realm of distributed systems. This research serves as a crucial resource for

ensuring the safe and dependable functioning of systems that employ the saga pattern,

providing valuable guidance to practitioners in the field. To maintain eventual consistency

among all microservices, any modifications that solely impact the cache levels undergo

compensation through a dedicated compensation transaction in the event of a failure. This

compensatory action is seamlessly facilitated by employing delayed database commit, efficiently

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
225

managed through the message broker. This meticulous attention to detail ensures the

attainment of optimal system performance while preserving data integrity and consistency.

References

1. Yamina Romani, Okba Tibermacine, Chouki Tibermacine, Towards Migrating Legacy

Software Systems to Microservice-based Architectures: a Data-Centric Process for

Microservice Identification, DOI: 10.1109/ICSA-C54293.2022.00010, ISSN : 2768-4288

Carrasco, B. V. Bladel and S. Demeyer, ”Migrating towards mi- croservices: Migration

and architecture smells”, Proceedings of the 2nd International Workshop on

Refactoring, pp. 1-6, 2018.

2. M. Gysel, L. Ko¨lbener, W. Giersche and O. Zimmermann, ”Service cutter: A

systematic approach to service decomposition” in Service- Oriented and Cloud

Computing, Springer, pp. 185-200, 2016.

3. Umakant Dinkar Butkar, et.al “Accident Detection and Alert System (Current Location)

Using Global Positioning System” JOURNAL OF ALGEBRAIC STATISTICSVol. 13 No. 3

(2022) e-ISSN: 1309-3452. Retrieved from

https://publishoa.com/index.php/journal/article/view/591

4. Krishna Mohan Koyya, B Muthukumar, A Survey of Saga Frame- works for Distributed

Transactions in Event-driven Microservices, 2022 Third International Conference on

Smart Technologies in Com- puting, Electrical and Electronics (ICSTCEE), DOI

:10.1109/IC-STCEE56972.2022.10099533, Electronic ISBN: 978-1-6654-5664-7

5. Mr. Umakant Dinkar Butkar, Manisha J Waghmare. (2023). Novel Energy Storage Material

and Topologies of Computerized Controller. Computer Integrated Manufacturing

Systems, 29(2), 83–95. Retrieved from http://cims-

journal.com/index.php/CN/article/view/787.

6. Pan Fan, Jing Liu, Wei Yin, Hui Wang, Xiaohong Chen and Haiying Sun, ”2PC*: a

distributed transaction concurrency control protocol of multi- microservice based on

cloud computing platform”, Journal of Cloud Computing: Advances Systems and

Applications, 2020.

7. Hector Garcia-Molina and Kenneth Salem, ”Sagas”, ACM Sigmod Record, vol. 16, no. 3,

pp. 249-259, 1987.

8. Evgeny Volynsky, Merlin Mehmed, Stephan Krusche, Architect: A Framework for the

Migration to Microservices, 2022 International Conference on Computing, Electronics &

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
226

Communications Engineering (iCCECE), INSPEC Accession Number :22027055, DOI:

10.1109/iC-

9. CECE55162.2022.9875096

10. Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe and Ferhat Khendek,

”Deploying microservice based applications with ku- bernetes: Experiments and lessons

learned”, 2018 IEEE 11th Interna- tional Conference on Cloud Computing (CLOUD), pp.

970-973, 2018.

11. Chaitanya K Rudrabhatla, ”Comparison of event choreography and orchestration

techniques in microservice architecture”, International Journal of Advanced Computer

Science and Applications, vol. 9, no. 8, pp. 18-22, 2018.

12. Ernst Oberortner, Uwe Zdun and Schahram Dustdar, ”Domain-specific languages for

service-oriented architectures: An explorative study”, European Conference on a

Service-Based Internet, pp. 159-170, 2008.

13. Sahin Aydin, Cem Berke C¸ ebi, Comparison of Choreography vs Or- chestration

Based Saga Patterns in Microservices, 2022 International Conference on Electrical,

Computer and Energy Technologies (ICE- CET), DOI:

10.1109/ICECET55527.2022.9872665, INSPEC Accession Number 22028506

14. Umakant Dinkar Butkar, Dr. Nisarg Gandhewar. (2022). ALGORITHM DESIGN FOR

ACCIDENT DETECTION USING THE INTERNET OF THINGS AND GPS MODULE. Journal of

East China University of Science and Technology, 65(3), 821–831. Retrieved from

http://hdlgdxxb.info/index.php/JE_CUST/article/view/313

15. W. Andreas et al., ”Model-as-You-Go for Choreographies: Rewinding and Repeating

Scientific Choreographies”, IEEE Transactions on Ser- vices Computing, vol. 13, no. 5,

pp. 901-914, 2020.

16. G. Anushri, P. Panagiotopoulos and F. Bowen, ”An Orchestration Approach to Smart

City Data Ecosystems”, Technological Forecasting and Social Change, vol. 153, 2020.

17. Anis Boubaker, Hafedh Mili, Yasmine Charif, Abderrahmane Leshob, Methodology and

Tool for Business Process Compensation Design, 2013 17th IEEE International Enterprise

Distributed Object Comput- ing Conference Workshops, Electronic ISBN: 978-1-4799-

3048-7, DI: 10.1109/EDOCW.2013.23

18. A. Boubaker, H. Mili, A. Leshob, and Y. Charif. A Value-Oriented Approach to Business

Process Compensation Design. In 2nd IEEE Int. Conference on Information Technology

and e-Services, 2012.

Vol.29 计算机集成制造系统 ISSN

No. 6 Computer Integrated Manufacturing Systems 1006-5911

Computer Integrated Manufacturing Systems
227

19. C Ghidini, C.D Francescomarino, M Rospocher, P Tonella, and L Serafini. Semantics-Based

Aspect-Oriented Management of Exceptional Flows in Business Processes. Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(1):25-

37, 2012.

20. Daraghmi, E.; Zhang, C.-P.; Yuan, S.-M. Enhancing Saga Pattern for Distributed

Transactions within a Microservices Architecture. Appl. Sci. 2022, 12, 6242.

https://doi.org/ 10.3390/app12126242

