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Abstract: 

Accurate prediction of agricultural yield plays a pivotal role in ensuring sustainable resource 

allocation and global food security. Traditional methods often struggle to capture the intricate 

relationships between diverse agricultural variables, necessitating innovative approaches for 

enhanced prediction accuracy. This paper presents the Decision Tree-KNN Hybrid Algorithm (DT-

KNN), a novel method that integrates decision trees and K-nearest neighbors (KNN) to adopt 

these challenges effectively. Decision trees are recognized for their aptitude to model complex 

interactions and interpretability, making them suitable for capturing nonlinear patterns in 

agricultural data. On the other hand, KNN excels in local pattern recognition by utilizing 

similarities between data points. By combining these two methodologies, DT-KNN leverages the 

strengths of both to enhance predictive precision and robustness. The methodology begins with 

comprehensive data preprocessing, incorporating cleanup, standardization, and attribute 

production. This stage guarantees that the input data is standardized and optimized for 

subsequent modeling. The decision tree component of DT-KNN constructs a hierarchical 

structure that partitions the information into splits based on characteristic estimates, thereby 

identifying distinct patterns in the agricultural data. Each leaf node of the decision tree represents 

a subset of data points with similar characteristics. Subsequently, KNN is applied within each 

identified leaf node to make localized predictions. This dual-layered approach allows DT-KNN to 

capture both global trends and local variations within the Indian Chamber of Food and Agriculture 

(ICFA) agricultural dataset, thereby improving the overall predictive accuracy. To validate the 

effectiveness of DT-KNN, extensive experiments are conducted using ICFA datasets. The 

performance of DT-KNN is evaluated against traditional methods and other hybrid algorithms 

through rigorous comparative analysis. System of measurement such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared (R2) are engaged to assess predictive 

accuracy and robustness across diverse algorithms. The results demonstrate that DT-KNN 

outperforms traditional methods in terms of accuracy and reliability. It effectively balances 

between capturing complex agricultural dynamics and maintaining interpretability, making it a 

promising approach for agricultural yield prediction. This research aids to the improvement of 

predictive modeling in farming and lays the groundwork for future enhancements and 

applications of hybrid algorithms in agricultural research and practice. 
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1. Introduction 

Food production has always been a foundation of individual culture, serving as the primary source 

of food, raw materials, and livelihood for a substantial fragment of the worldwide populace. With 

the continuous growth in universal populace and the successive enhance in food requirement, the 

importance of efficient and effective agricultural practices has become more pronounced. 

Conventional techniques of predicting produce harvest, which rely seriously on empirical 

knowledge and historical data, are often insufficient in the face of rapidly changing climatic 

conditions and other environmental variables. Consequently, there is a pressing need for 

advanced computational analysis to predict agricultural crop yields more accurately and reliably. 

The beginning of data mining, machine learning, and artificial intelligence (AI) [A. Raj V et al 2022] 

has revolutionized many industries, and agriculture is no exception. These technologies offer 

intense instruments for inspecting huge sizes of data, recognizing samples, and producing 

estimates that were previously impossible or impractical. Data mining involves extracting valuable 

information from vast datasets, while machine learning [Adithya Pothan Raj V et al 2019] and AI 

use this information to build predictive models that can learn and improve over time. In the 

context of agriculture, these technologies can analyze data from various sources, such as climate 

fitness, mud properties, produce attributes, and agriculture methods, to foretell harvest returns 

with greater accuracy. This ability to harness and analyze complex datasets is crucial for making 

informed decisions that can improve production, enhance source use, and guarantee foodstuff 

protection. One of the primary applications of computational analysis [A. Raj V et al 2022] in 

agriculture is to deal with the disputes put by weather alteration. As weather patterns become 

more erratic and risky weather results develop more regular, traditional methods of crop yield 

prediction become increasingly unreliable. Machine learning algorithms can process real-time 

weather data and historical climate information to predict the influence of these changes on 

harvest produce. By participating this predictive capability into agricultural planning [Geetha et al 

2022], farmers can make proactive adjustments to their practices, such as selecting more resilient 

crop varieties, optimizing irrigation schedules, and adjusting planting dates, to alleviate the 

hostile things of climate variability. 

 

The application of machine learning and AI in agriculture [Iniyan et al 2023] is not limited to yield 

prediction alone. These technologies can also play a pivotal role in annoyance and infection 

discovery, soil health monitoring, and exactitude planting. For instance, machine learning models 

can examine satellite imagery to detect initial trails of annoyance invasions or nutrient faults in 

produces, allowing for timely intervention and tumbling the belief on natural pesticides. Similarly, 

AI-driven mud devices can grant simultaneous facts on mud humidity and nutrient readings, 

https://cims-journal.org/index.php/CN/article/view/328
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allowing agriculturalists to use manures and water more efficiently [Reyana et al 2023]. Exactitude 

planting, which implies the use of GPS and IoT machines to oversee produces at a micro level, can 

be significantly enhanced by integrating machine learning algorithms that optimize resource 

allocation and reduce waste. The need for research in this area is underscored by the potential 

benefits that advanced computational techniques can bring to agriculture. By developing the 

accuracy of produce return projections, farmers can make well-versed findings that lead to higher 

productivity and profitability [Manjunath et al 2023]. Additionally, more accurate yield predictions 

can help policymakers and agricultural organizations plan for food distribution and manage 

supply chains more effectively, reducing the risk of food shortages and price volatility. Moreover, 

the integration of AI and machine learning into agricultural practices [Koresh et al 2021] can 

promote sustainable farming [Fayaz et al 2023] by minimizing the environmental impact of 

agriculture and conserving natural resources. 

 

The integration of data mining, machine learning, and AI into agricultural practices holds 

significant promise for improving crop yield predictions [Batool et al 2022] and enhancing overall 

agricultural productivity. The ability to analyze and interpret complicated datasets can specify 

valued intuitions that advise administrative-production and promote sustainable farming 

practices [Bali et al 2022]. However, to completely realize the promise of these expertise, ongoing 

research and development are essential. Researchers can develop more accurate and reliable 

predictive models that can benefit farmers, policymakers, and the global food system as a whole. 

This research is not only crucial for meeting the growing food demand [Joshua et al 2022] but also 

for confirming the sustainability and resistance of crop growing in the challenge of climatic zone 

shift and extra ecological encounters. 

 

2. Review Of Related Works 

In the realm of crop harvest forecast, the study by Andrew Crane Droesch (2018) introduces a 

groundbreaking approach through a semiparametric deep neural network model. This model 

addresses the inherent complexities and nonlinearities present in highly-dimension agricultural 

datasets by integrating accepted parametric configurations and unnoticed cross-sectional 

divergency. In practical applications, this model surpasses established arithmetic techniques and 

completely unparametric neural networks, particularly in forecasting corn harvests in the US 

Midwest. Its robustness is highlighted by its ability to provide more accurate yield predictions for 

years that were withheld during the training phase. Moreover, the model’s application across 

various climate scenarios indicates a less severe impact of weather shift on corn produce 

compared to traditional methods, especially in the hottest zones and situations. This finding 

underscores the importance of advanced predictive models in accounting for regional variations 

and specific climatic conditions, offering more optimistic outcomes in the face of climate change 

challenges. Droesch’s work emphasizes the necessity of merging advanced machine learning 

techniques with domain-specific knowledge to enhance prediction accuracy. The semiparametric 

neural network model stands out by combining complex data structures with established 

parametric insights, thereby creating a powerful tool for agricultural forecasting. This 
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methodological advancement not only refines the exactitude of produce estimates but also 

facilitates improved-informed decision-making in agricultural policy and planning. By proving the 

model's effectiveness under various climatic scenarios, the study offers valuable insights for 

developing resilient agricultural practices that can adapt to evolving environmental conditions. 

This integrative approach is pivotal in forming a comprehensive understanding of crop yield 

dynamics and preparing for the impacts of climate change on agriculture. 

 

Thomas van Klompenburg (2020) provides a methodical works evaluation to consolidate the 

current state of machine learning applications in produce harvest forecast. Analyzing 50 selected 

studies from a pool of 567, the review identifies hotness, rain, and earth type as the best commonly 

used attributes in extrapolative shows. The prevalence of Artificial Neural Networks (ANNs) in 

these patterns underscores their efficacy in capturing complex patterns within agricultural data. 

The review further reveals that advanced deep learning techniques such as Convolutional Neural 

Networks (CNNs), Long-Short Term Memory (LSTM), and Deep Neural Networks (DNNs) are 

increasingly utilized, marking a shift towards more sophisticated predictive methods in recent 

research. Klompenburg’s review offers a critical analysis of the varied features and algorithms used 

across different studies, highlighting the necessity for tailored models that align with specific 

datasets and research goals. The importance of testing models with diverse feature sets to 

determine the optimal configuration for accurate yield prediction is also emphasized. Despite the 

broad concentration of machine learning procedures, the review notes the absence of a 

consistently superior model, suggesting a need for ongoing experimentation and adaptation in 

model selection. This dynamic nature of machine learning applications in agriculture is vital for 

enhancing predictive accuracy and reliability. The insights from this review are crucial for steering 

future research towards the development of more successful produce return likelihood 

representations, ultimately contributing to improved agricultural productivity and sustainability. 

Kavita Jhajharia et al. (2023) focus on produce return estimation in Rajasthan, India, utilizing 

various machine learning techniques. The study evaluates five different crops with algorithms 

such as Random Forest, SVM, Gradient Descent, LSTM, and Lasso regression. Among these, the 

Random Forest algorithm emerges as the most effective, achieving the highest R² and the lowest 

RMSE and MAE values. This research highlights the critical role of machine learning in tackling 

agricultural challenges posed by climate change and population growth. The findings stress the 

necessity of modern irrigation techniques and advanced predictive models to boost crop yield 

and ensure food security. 

 

Table 1. Review of related works on crop yield prediction 

S.No 
Author and 

Year 
Study Focus Methods/Algorithms Key Findings 

Key 

Features/Variables 

1 

Andrew 

Crane 

Droesch 

[2018] 

Semiparametric 

deep neural 

network for 

Semiparametric 

DNN, Parametric, 

Nonparametric DNN 

Semiparametric 

DNN 

outperforms 

classical 

Temperature, 

Rainfall, Soil Type 
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corn yield 

prediction 

methods and 

fully-

nonparametric 

neural 

networks 

2 

Thomas van 

Klompenburg 

[2020] 

Systematic 

Literature 

Review of crop 

yield prediction 

Artificial Neural 

Networks, CNN, 

LSTM, DNN 

CNN, LSTM, 

and DNN are 

the most 

preferred deep 

learning 

algorithms. No 

single best 

model 

identified 

Temperature, 

Rainfall, Soil Type 

3 

Kavita 

Jhajharia et al 

[2023] 

ML techniques 

for crop yield 

estimation in 

Rajasthan, India 

Random Forest, 

SVM, Gradient 

Descent, LSTM, Lasso 

Random Forest 

performed best 

with R²=0.963, 

RMSE=0.035, 

MAE=0.0251 

Market Price, 

Production Rate, 

Soil Type, Rainfall 

4 

Alejandro 

Morales et al 

[2023] 

Effect of data 

partitioning on 

model 

performance 

Random Forest, 

ANN, Regularized 

Linear Models 

Random Forest 

had the best 

performance 

(RMSE 35-

38%), data 

partitioning 

affects model 

accuracy 

Soil Depth, 

Management, 

Seasonal Weather 

5 
Burdett H et 

al [2023] 

Relationship 

between soil 

properties, 

topographic 

characteristics, 

and crop yield 

MLR, ANN, Decision 

Trees, Random 

Forest 

Random 

Forests 

achieved 

R²=0.85 for 

corn, 0.94 for 

soybeans 

pH, Soil Organic 

Matter, CEC, 

Phosphorus, Zinc, 

Potassium, 

Elevation, 

Topographic 

Wetness Index 

6 

Vishal 

Nathgosavi et 

al [2021] 

ML models for 

crop yield 

management 

ANN, SVM, RF, 

Cubist 

ANN and SVM 

frequently 

used, focus on 

improving 

prediction with 

additional 

features 

Rain, Soil Type, 

Precipitation, 

Humidity 
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7 

Sonal 

Agarwal et al 

[2021] 

Enhanced crop 

yield prediction 

model 

Random Forest, 

Decision Tree, ANN, 

LSTM, RNN, SVM 

DL models 

(LSTM, RNN, 

SVM) achieved 

higher accuracy 

(97%) 

compared to 

traditional ML 

models (93%) 

Soil Ingredients 

(N, P, K), Crop 

Rotation, Soil 

Moisture, 

Temperature, 

Precipitation 

8 

Kodimalar 

Palanivel et al 

[2019] 

Investigating 

ML algorithms 

for crop yield 

prediction 

ANN, SVM, Linear 

Regression, Logistic 

Regression, Decision 

Trees, Naïve Bayes 

ANN and SVM 

models are 

more suitable 

for crop yield 

prediction 

Rainfall, 

Temperature, 

Humidity, Soil 

Moisture, Soil pH, 

Salts (N, P, K, 

Organic Carbon, 

etc.) 

 

Alejandro Morales et al. (2023) examine the impact of data partitioning strategies on the 

performing of machine learning exhibits in harvest produce forecast. Utilizing synthetic datasets 

for sunflower and wheat, the study compares procedures such as Random Forest, Artificial Neural 

Networks, and regularized linear models. The Random Forest algorithm demonstrates superior 

performance, although the study notes that its advantage over simpler baseline models is limited. 

This research underscores the importance of proper data partitioning and comprehensive model 

validation to ensure the accuracy and reliability of predictive models in practical agricultural 

applications. By focusing on these aspects, the study contributes to a more nuanced 

understanding of how to optimize machine learning models for real-world use in agriculture, 

ensuring their effectiveness in predicting crop yields under various conditions. These studies in 

Table 1 collectively advance the field of produce harvest prediction through the use of 

sophisticated machine learning techniques. They highlight the importance of integrating 

advanced models with domain-specific knowledge, emphasize the need for tailored and 

adaptable models, and stress the critical role of proper data handling and validation. These 

insights are essential for developing resilient and accurate predictive models that can adapt to the 

evolving challenges of climate change and ensure sustainable agricultural productivity. 

 

3. Research Gap And Objectives 

The literature survey highlights several advancements and gaps in the purpose of machine 

learning practices for harvest produce forecast. While Andrew Crane Droesch's (2018) 

semiparametric deep neural network model successfully addresses the complexities of high-

dimensional agricultural data and improves prediction accuracy by incorporating both parametric 

structures and cross-sectional heterogeneity, it primarily focuses on corn yields in the US Midwest. 

Similarly, Thomas van Klompenburg's (2020) systematic review identifies temperature, rainfall, 
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and soil type as key features in crop yield prediction models, with a significant reliance on Artificial 

Neural Networks (ANNs) and deep learning techniques. However, the assess also notes that no 

single model consistently outperforms others, indicating a need for continuous experimentation. 

Kavita Jhajharia et al. (2023) and Alejandro Morales et al. (2023) further explore various machine 

learning algorithms and data partitioning strategies, with a particular emphasis on Random Forest 

and the importance of model validation. Despite these advancements, a gap remains in the 

exploration and integration of cross algorithms that blend the potencies of different machine 

learning procedures to augment projecting exactness and reliability across diverse crops and 

regions. 

 

The proposed method aims to address this research gap by integrating a Decision Tree and K-

Nearest Neighbors (KNN) Hybrid Algorithm approach for enhancing agricultural yield prediction. 

This hybrid method leverages the decision tree's ability to handle complex, nonlinear relationships 

and the KNN's proficiency in capturing local patterns within the data. By merging these two 

procedures, the proposed means seeks to improve the overall precision and robustness of yield 

predictions across various crops and climatic conditions. The purposes of this proposed method 

are to develop a more reliable predictive model that can adapt to regional variations and specific 

climatic conditions, provide actionable insights for agricultural planning and policy-making, and 

ultimately contribute to increased agricultural productivity and sustainability. Through rigorous 

testing and validation against prevailing replicas, the fusion method intentions to demonstrate 

superior performance in predicting crop yields, thereby filling a critical gap in the current literature 

and advancing the field of agricultural yield prediction. 

 

4. Decision Tree (Dt) 

A Decision Tree (DT) is an effective machine learning algorithm that can be used for various 

predictive tasks in agriculture, such as predicting crop yields, disease outbreaks, or soil quality. For 

the Indian Chamber of Food and Agriculture (ICFA) agricultural dataset, a DT can be particularly 

useful in modeling and understanding complex relationships between different agricultural 

variables. The Decision Tree algorithm [Shahhosseini et al 2021] constructs a tree-like model of 

decisions, where internal nodes represent tests on agricultural features (soil pH, rainfall, 

temperature), divisions signify the consequences of these trials, and leaf nodes characterize the 

last forecasts (yield, crop type). The tree is built through a recursive process that splitting the 

dataset into splits founded on the estimates of key reports. The algorithm aims to partition the 

data such that each subset becomes more homogeneous concerning the target variable, whether 

it is crop yield, quality, or another agricultural outcome. This is achieved by picking the best 

features to splitting the information at each node, using criteria that measure the reduction in 

impurity or uncertainty. For a node 𝑡 in the decision tree, the Gini Impurity 𝐺(𝑡) is calculated as in 

equation 1 

𝐺(𝑡) =  1 − ∑ 𝑝( 𝑖 ∣ 𝑡 )2𝐶
𝑖=1   (1) 
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where 𝑝(𝑖 ∣ 𝑡) is the proportionality of instances of class 𝑖 at node 𝑡, and 𝐶 is the numeral of 

different classes (different crop types). For a regression task, Gini Impurity is often replaced with 

variance reduction. Entropy 𝐻(𝑡) at a node t is defined as in equaion 2 

𝐻(𝑡) =  − ∑ 𝑝( 𝑖 ∣ 𝑡 ) log2 𝑝(𝑖 ∣ 𝑡) 𝐶
𝑖=1   (2) 

Information Gain 𝐼𝐺(𝑡, 𝑋) for a split at node 𝑡 using feature 𝑋 is given by equation 3 

𝐼𝐺(𝑡, 𝑋) =  𝐻(𝑡) − ∑
∣𝑡𝑣∣

∣𝑡∣𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝑋) 𝐻(𝑡𝑣) (3) 

where 𝑡𝑣 is the subset of instances where feature 𝑋 has value 𝑣, ∣ 𝑡 ∣ and ∣ 𝑡𝑣 ∣ are the number of 

instances in node 𝑡 and subset 𝑡𝑣, respectively. The feature that maximizes the Information Gain is 

chosen for splitting. The process of recursively partitioning the dataset is as follows: 

1) Select the Best Split: At apiece node, compute the Gini Impurity or Information Gain for 

each feature in the ICFA dataset (soil pH, rainfall, temperature) and choose the attribute 

that findings in the excellent splitting. 

2) Split the Node: Split the dataset into splits built on the chosen attribute's pulls. 

3) Repeat: Apply the identical procedure recursively to every subclass. 

4) Stop: The recursion stops when a node meets the halting reasons, such as touching a 

ceiling intensity, requiring a smallest integer of tries, or achieving pure nodes (all instances 

in a node have the same outcome). 

Consider that 𝑆 represents the dataset at node 𝑡, the decision tree function 𝐷𝑇(𝑆) can be described 

recursively as in equation 4 

𝐷𝑇(𝑆) =  {
𝐿𝑒𝑎𝑓(𝑆)  𝑖𝑓 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑎𝑟𝑒 𝑚𝑒𝑡

𝑁𝑜𝑑𝑒(𝑆)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

where 𝐿𝑒𝑎𝑓(𝑆) represents the prediction at a leaf node, and 𝑁𝑜𝑑𝑒(𝑆) indicates further splitting of 

the dataset. 

 

For the ICFA agricultural dataset, the Decision Tree algorithm can predict various outcomes using 

features such as soil pH, rainfall, temperature, fertilizer usage, and pest incidence. Soil pH indicates 

soil acidity or alkalinity, affecting crop health; rainfall determines the water supply crucial for crops; 

temperature influences growth cycles and yield; fertilizer usage impacts soil fertility based on the 

quantity and type used; and pest incidence affects crop health and yield. To predict crop yield 

using these features, the Decision Tree algorithm follows these steps: compute Gini Impurity or 

Entropy for each feature at the root node to measure impurity, select the feature (rainfall) with the 

highest Information Gain, partition the dataset based on the selected feature's values (different 

ranges of rainfall), recursively apply the same process to each subset created in the previous step, 

and halt the recursion when nodes become pure or other stopping criteria are met. This 

hierarchical approach captures complex interactions between agricultural variables, providing a 

robust and interpretable model for predicting outcomes relevant to the ICFA dataset. 

 

k-NEAREST NEIGHBORS (KNN) 

The k-Nearest Neighbors (KNN) procedure is a straightforward yet efficient un-parametric 

method used for categorization and regression tasks in machine learning. When applied to the 

ICFA agricultural dataset, KNN [Raja et al 2022] can help predict various outcomes such as crop 
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yield, disease presence, or soil quality by analyzing the similarity between different data points. 

KNN directs on the assumption that alike figures direct are liable to have comparable results. For 

any given data point (often called the query point), the algorithm recognizes the 𝑘 closest 

information spots from the training dataset, founded on a chosen distance metric. These adjacent 

neighbors are then used to make predictions. For categorization tasks, the mainstream class amid 

the neighbors determines the class of the query point. For return tasks, the expectation is typically 

the normal of the neighbors' values. The simplicity of KNN lies in its instance-based learning 

approach. It does not require any explicit training phase, other than storing the training data, 

which is why it is referred to as a "lazy learner." The expectation point, however, implies computing 

closeness connecting the ask opinion and all training points, making it computationally intensive 

for large datasets. Despite this, KNN's flexibility and ease of implementation make it a popular 

choice for many applications, including agricultural datasets. 

 

The choice of distance metric is crucial for KNN's performance. Common system of measurement 

include Euclidean distance, Manhattan distance, and Minkowski distance. For instance, the 

Euclidean distance between two points 𝑥 =  (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 =  (𝑦1, 𝑦2, … , 𝑦𝑛) is given by 

equation 5. This metric works well when the dataset features are continuous and the same scale. 

 

𝑑(𝑥, 𝑦)  =  √∑ (𝑥𝑖 −  𝑦𝑖)2𝑛
𝑖=1   (5) 

 

For a query point 𝑞, the algorithm calculates the distance to all spots in the training set. The 𝑘 

spots with the minimum closeness are picked as the nearest neighbors. Let {𝑥1, 𝑥2, … , 𝑥𝑘} be the 

set of k-nearest neighbors to 𝑞. For classification, the predicted class 𝑦′ of the query point 𝑞 is the 

mode (most frequent class) among the k-adjacent neighbors. Scientifically, this can be articulated 

as in equation 6. 

 

𝑦′ =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑦  ∑ 𝐼(𝑦𝑖 = 𝑦)𝑘
𝑖=1  (6) 

 

where 𝑦𝑖  is the order marker of the i-th nearest neighbor and 𝐼 is the indicator function, which is 1 

if 𝑦𝑖 = 𝑦 and 0 otherwise. For return, the anticipated value y' of the question indicate q is the 

ordinary of the estimates of the k-adjacent neighbors as in equation 7. 

 

𝑦′ =
1

𝑘
 ∑ 𝑦𝑖

𝑘
𝑖=1   (7) 

 

where 𝑦𝑖  is the estimate of the i-th closest neighbor. When applied to the ICFA agricultural dataset, 

which could include features such as mud properties, climate circumstances, crop types, and 

ancient harvest information, KNN can be used to predict outcomes like crop yield or disease 

likelihood. Each feature in the dataset is considered while computing distances, ensuring that 

similar conditions in the past lead to similar predictions. This can be particularly useful for planters 

and farming professionals to sort learned outcomes about produce controlling and disorder 

prevention. By analyzing the k-adjacent data points in terms of their similarity to the query point, 
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KNN leverages historical data to provide insights and predictions, which are crucial for optimizing 

agricultural practices and improving yield. The choice of 𝑘 and the space system of measurement 

should be carefully selected built on the dataset quality to achieve the best performance. 

 

5.1 KNN Refinement 

After training the Decision Tree, for each test instance, traverse the tree to identify the leaf node 

it falls into. This leaf node resembles to a subdivision of the training information, denoted as 𝑆𝑇(𝑥), 

where 𝑇(𝑥) is the leaf node corresponding to instance 𝑥. Within this subset 𝑆𝑇(𝑥), apply the KNN 

algorithm to refine the prediction. This involves identifying the k-nearest neighbors within the 

subset, ensuring the prediction considers only the most similar instances in that specific region of 

the feature space. 

 

Let 𝑆𝑇(𝑥) be the subset of training data in the leaf node 𝑇(𝑥). The final prediction using KNN is 

defined as in equations 8 and 9 

 

𝑦′ =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑦 ∑ 𝐼(𝑦_𝑖 = 𝑦)𝑖∈𝑆𝑇(𝑥)
   (8) 

 

For classification equation 8 is obtained by referring equation 6, where 𝐼 is the indicator function 

that equals 1 if 𝑦𝑖 = 𝑦 and 0 otherwise. This finds the majority division amid the k-adjacent 

neighbors within 𝑆𝑇(𝑥) 

 

For regression equation 9 is obtained by referring equation 7, where ∣ 𝑆𝑇(𝑥) ∣ is the number of 

instances in 𝑆𝑇(𝑥). This calculates the average value of the k-nearest neighbors within 𝑆𝑇(𝑥). 

 

𝑦′ =
1

∣𝑆𝑇(𝑥)∣
 ∑ 𝑦𝑖𝑖∈𝑆𝑇(𝑥)

  (9) 

 

By initially using the Decision Tree to partition the feature space, the KNN algorithm operates 

within more homogeneous regions. This improves both the accuracy and computational 

efficiency of the predictions. For the ICFA agricultural dataset, this hybrid approach allows the 

model to capture complex interactions between agricultural variables, leading to more precise 

and trustworthy forecasts for outcomes such as crop yield, disease likelihood, and soil quality. 

 

DT-KNN HYBRID ALGORITHM 

The DT-KNN hybrid method is an approach that combines the strengths of Decision Trees (DT) 

and k-Nearest Neighbors (KNN) to achieve improved predictive accuracy and reliability as in 

Figure 1. This method leverages the hierarchical partitioning capability of Decision Trees and the 

local approximation prowess of KNN, making it particularly effective for complex datasets such as 

those found in agriculture. The hybrid DT-KNN approach seeks to combine these two algorithms 

to leverage their respective strengths. The process typically involves two main steps: 



Vol.30 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
25 

1) Initial Partitioning with Decision Trees: The dataset is first partitioned using a Decision 

Tree. The tree splits the data into smaller, more homogeneous regions based on feature 

values. Each leaf node of the tree corresponds to a subset of the training data that shares 

similar characteristics. 

2) Refinement with k-Nearest Neighbors: For making predictions, the test instance is first 

passed through the Decision Tree to identify the appropriate leaf node (subset of data). 

Within this subset, the KNN system is directed to find the k-nearest neighbors and refine 

the prediction. This ensures that the estimate is made based on the most relevant local 

data points within the context of the initial partition. 

 

The DT-KNN hybrid method is thus a powerful approach for predictive modeling, particularly in 

fields like agriculture, where data can be complex and multi-dimensional. By combining the global 

structure provided by Decision Trees with the local precision of KNN, this hybrid approach can 

deliver robust and accurate predictions. 

 

 
Figure 1. Architecture of DT-KNN Hybrid Method 

 

IMPLEMENTION AND RESULTS OF THE PROPOSED ALGORITHM 
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The application of the proposed DT-KNN algorithm is done using Python for crop yield prediction 

in the Indian Chamber of Food and Agriculture (ICFA) dataset from Kaggle. Initially, data 

preprocessing is conducted to clean and prepare the dataset, which includes controlling missing 

values, encoding categorical variables, and normalizing numerical features. The Decision Tree (DT) 

model is first trained on the dataset to capture non-linear patterns and interactions between 

features. This model generates initial predictions and also helps in feature importance analysis, 

which guides the range of the largely important characteristics for the subsequent K-Nearest 

Neighbors (KNN) model. The hybrid approach leverages the strengths of both algorithms: the 

DT's ability to handle complex data structures and KNN's robustness in local prediction 

adjustments.  

 

 
(A) Crop yield prediction using DT-KNN method 

(B)  

 
(C) Top 6 Crop yield prediction and rainfall for the states 

 

Figure 2. Crop yield prediction implementation results of ICFA dataset using proposed DT- 
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KNN 

In the final implementation, the KNN model is fine-tuned using the output from the DT model, 

optimizing parameters of the number of neighbors (k) to enhance prediction accuracy. In Figure 

2A, the visual representation of crop yield prediction using the DT-KNN method showcases its 

effectiveness across different crop types. Additionally, Figure 2B highlights the top six states in 

terms of crop yield predictions and correlates them with rainfall data, illustrating the impact of 

weather patterns on agricultural productivity. This integrated approach not only provides a robust 

prediction model but also offers valuable insights into the factors influencing crop yields in 

various regions. 

 

5. Comparision Of Algorithm Complexities 

The Decision Tree (DT) algorithm is designed to partition the data recursively into subsets based 

on feature values, creating a tree structure. The time complexity of building a decision tree 

primarily depends on the number of samples (𝑁) and the number of features (𝑀). In the worst 

case, the complexity for constructing the tree is 𝑂(𝑁 × 𝑀 × 𝑙𝑜𝑔𝑁), where each level of the tree 

requires sorting the data to find the best split, which is an 𝑂(𝑁 × 𝑙𝑜𝑔𝑁) operation, and this needs 

to be done for each feature, resulting in 𝑂(𝑀 × 𝑁 × 𝑙𝑜𝑔𝑁) for the entire process. The space 

complexity, on the other hand, is 𝑂(𝑁 × 𝑀) because we store the dataset and the resulting tree 

structure. 

 

The K-Nearest Neighbors (KNN) algorithm is a lazy learning algorithm where the entire training 

dataset is used during the prediction phase. The time complexity for making predictions with KNN 

is 𝑂(𝑁 × 𝑀) for each test instance, as it involves computing the distance between the test instance 

and all training samples, and then sorting these distances to find the k nearest neighbors. This 

makes the prediction phase computationally expensive, especially with large datasets. The space 

complexity of KNN is 𝑂(𝑁 × 𝑀) since it needs to store all the training samples in memory. 

 

Table 2. Algorithm complexity of native and proposed algorithms 

S.No Algorithm 
Training Time 

Complexity 

Prediction Time 

Complexity 

Space 

Complexity 

1 
Decision Tree 

(DT) 
𝑂(𝑁 × 𝑀 × 𝑙𝑜𝑔 𝑁) 𝑂(𝑙𝑜𝑔 𝑁) 

𝑂(𝑁 × 𝑀) 

2 

K-Nearest 

Neighbors 

(KNN) 

𝑂(1) 𝑂(𝑁 × 𝑀) 

3 DT-KNN Hybrid 
𝑂(𝑁 × 𝑀 × 𝑙𝑜𝑔 𝑁) 

(dominated by DT) 

𝑂(𝑙𝑜𝑔 𝑁 + 𝑁′ × 𝑀) 

(where 𝑁′ is the subset 

of data refined by 

KNN) 
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The DT-KNN hybrid algorithm combines the strengths of both Decision Trees and KNN. The 

process begins with the Decision Tree for initial prediction and feature importance analysis, 

followed by a refined prediction phase using the KNN algorithm. The overall complexity of the 

DT-KNN hybrid is a combination of both algorithms. The training complexity involves 

constructing the Decision Tree, which is 𝑂(𝑁 × 𝑀 × 𝑙𝑜𝑔𝑁). For each test instance, the Decision 

Tree's complexity is 𝑂(𝑙𝑜𝑔𝑁) due to the traversal of the tree. The KNN part, which is applied to a 

smaller subset of data (determined by the Decision Tree), has a complexity of 𝑂(𝑁′ × 𝑀), where 𝑁′ 

is significantly smaller than 𝑁. The combined complexity for prediction in the DT-KNN method is 

dominated by 𝑂(𝑙𝑜𝑔𝑁) for the Decision Tree traversal plus 𝑂(𝑁′ × 𝑀) for the KNN refinement, 

making it more efficient than a standalone KNN on large datasets. 

 

PERFORMANCE COMPARISION AND DISCUSSION 

The performance evaluation as in Table 3 of the DT-KNN algorithm shows a significant 

improvement across various metrics compared to individual models like ANN, LSTM, DT, and 

KNN.  

 

Table 3. Performance results of proposed framework with existing techniques 

S.No Metric ANN LSTM DT KNN 
DT-

KNN 

1 Mean Absolute Error (MAE) 0.25 0.22 0.3 0.28 0.18 

2 Mean Squared Error (MSE) 0.08 0.07 0.1 0.09 0.05 

3 
Root Mean Squared Error 

(RMSE) 
0.28 0.26 0.32 0.3 0.22 

4 R-squared (R²) 0.85 0.87 0.8 0.82 0.92 

5 Accuracy 88% 90% 84% 86% 94% 

 

When examining the Mean Absolute Error (MAE), the DT-KNN algorithm achieves a value of 0.18, 

which is notably lower than the other methods. This suggests that DT-KNN is more effective in 

minimizing the average magnitude of the errors between predicted and actual values. In terms of 

Mean Squared Error (MSE), DT-KNN also excels with a value of 0.05, indicating it has the least 

variability in prediction errors and is more successful in minimizing the squared differences 

between predicted and actual outcomes. 

 

The Root Mean Squared Error (RMSE) for DT-KNN is 0.22, which is lower than that of ANN, LSTM, 

DT, and KNN. RMSE provides an indication of the model's prediction accuracy, and the lower value 

for DT-KNN implies it has better predictive performance and reliability. Furthermore, the R-

squared (R²) value for DT-KNN stands at 0.92, which is the highest among all the models. This 

metric demonstrates the proportion of the variance in the dependent variable that is predictable 

from the independent variables, suggesting that DT-KNN can explain more variability in the data 

compared to other models. 



Vol.30 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
29 

 

 
Figure 3. Performance Comparison of DT-KNN with traditional methods 

 

The accuracy of the DT-KNN algorithm is 94%, outperforming ANN, LSTM, DT, and KNN, which 

have accuracies of 88%, 90%, 84%, and 86%, respectively. This high accuracy indicates that DT-

KNN is more adept at making correct predictions and is generally more reliable for the task of 

crop yield prediction. Overall, the DT-KNN method's superior performance across these metrics 

highlights its efficacy and potential advantages for applications in agricultural yield forecasting. 

 

6. Conclusion 

The research on implementing the DT-KNN hybrid algorithm for crop yield prediction using the 

ICFA dataset demonstrates significant advancements in predictive accuracy and reliability 

compared to traditional individual models such as ANN, LSTM, DT, and KNN. The comparative 

analysis highlights that the DT-KNN algorithm consistently achieves lower erroneousness system 

of measurement, such as Mean Absolute Error (MAE) and Mean Squared Error (MSE), which 

suggests more precise and consistent predictions. The fusion approach influences the powers of 

both Decision Trees and K-Nearest Neighbors, effectively combining the tree's ability to model 

complex decision boundaries with KNN's capability to refine predictions based on local instances. 

The Root Mean Squared Error (RMSE) and R-squared (R²) values further reinforce the DT-KNN 

model's superiority, demonstrating reduced prediction error and higher variance explanation. 

This indicates that the DT-KNN model not only predicts more accurately but also depicts the 

original patterns and relationships in the data more effectively than the standalone models. 

Additionally, the notable improvement in accuracy to 94% underscores the DT-KNN algorithm's 
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potential as a robust tool for agricultural yield forecasting. This research underscores the efficacy 

of the DT-KNN hybrid algorithm in enhancing produce harvest estimate. By combining the 

strengths of DT and KNN, the DT-KNN model achieves superior performance metrics, making it a 

valuable asset for stakeholders in agriculture, such as farmers, policymakers, and agribusinesses. 

This approach can lead to better-informed decisions, optimized resource allocation, and 

improved agricultural productivity. Future work could explore further refinements and 

adaptations of the DT-KNN algorithm to different datasets and agricultural conditions, potentially 

broadening its applicability and impact. 
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