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Abstract: 

This study aims to adopt different models and apply various model compression and 

acceleration techniques to improve the performance of segmentation and computing efficiency 

of the semantic segmentation models for small objects such as safety guardrails. Due to the 

scarcity of data, caused by restrictions of construction site safety regulations and difficulty of 

data labeling, this study adopts the method of data augmentation to assist the training process 

of the model. In addition, in response to the model with hardware performance and a large 

amount of model parameters, it is found that using input images of different sizes for different 

models can ensure its segmentation performance and successfully perform guardrail 

identification according to the experiments. As a result, all models achieve above 0.54 in IoU. In 

this study, Ghost Module is chosen as the acceleration method, and experiments have 

confirmed that this acceleration method can help improve the computing efficiency and allow 

the performance of segmentation of the model up to an IoU of 0.65. Although running on edge 

devices cannot achieve the level of real-time segmentation, after model acceleration, the time 

required for an image is still significantly decreased by more than 110 percent. Also, since the 

guardrail is a static object, there is no need for the fast identification frequency. Finally, in order 

to further reduce the computational complexity of the model, this study uses model pruning to 

compress the overall model size. According to the results of the experiments, it is found that 

there is indeed a problem of redundant weights in the model. After removing a certain degree of 

redundant weights by the L1 norm and adopting fine-tuning, it can effectively improve the 

model's ability to segment guardrails 
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1. Introduction 

The construction industry is characterized by hazards in the workplace and variety of complex 

project types, leading to a high incidence rate of major occupational disasters compared to 

other industries. According to the Occupational Safety and Health Administration of the Ministry 

of Labor of Taiwan [1], the number of major occupational accidents in the construction industry 

is equivalent to in the sum of all other industries. These accidents are largely caused by human 

negligence, including workers unsafe behavior, inadequate use of personal protective 

equipment, and improper installation of guardrails and safety nets. 

 

In the past, monitoring workers' clothing and behavior, and ensuring compliance with safety 

regulations at construction sites was done manually. However, it was labor-intensive and 

financially demanding, and there was often delayed and inaccurate information caused by the 

negligence of supervisors. Later on, sensing technologies, such as radio frequency identification 

(RFID), global positioning system (GPS), and ultra-wideband (UWB) were used to aid in 

automated real-time monitoring of construction sites [2-5]. Nevertheless, these methods were 

often expensive and prone to inaccurate information due to interference from metal products or 

electronic signals. With the advancement of artificial intelligence in computer vision, the 

automation and real-time monitoring of construction sites have gained attention from 

academics. Currently, computer vision technologies are being increasingly applied to the 

construction industry for occupational accident prevention. Utilizing surveillance video or 

filming equipment provides supervisors with faster and more comprehensive information and 

enables the preliminary identification of dangerous behaviors during operations, reducing the 

likelihood of occupational accidents.  

 

Computer vision mainly includes image recognition, object detection, and image segmentation. 

In the construction industry, object detection is the most commonly used approach, particularly 

for detecting personal safety equipment [6]. Unlike object detection, there have been few cases 

of image segmentation being applied in the construction industry. Moreover, compared to 

other objects on the construction sites, safety guardrails are relatively small objects without a 

fixed format, causing uncertainty in their identification.  

 

This study aims to improve the performance of guardrail detection by adopting different 

semantic segmentation models, utilizing model acceleration and compression techniques, and 

enhancing the efficiency of automated supervision in the field of construction. 
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2. Related Work 

This study focuses on enhancing the performance of semantic segmentation models and 

reducing the computational cost by employing both model acceleration and compression 

techniques. This chapter will be divided into three sections. First, a review of deep learning 

approaches including semantic segmentation, model acceleration, and compression techniques 

will be presented. Secondly, the existing research on construction safety based on deep learning 

methods will also be reviewed. Finally, the target object of this study, safety guardrails, will be 

discussed in detail. 

 

2.1. Deep Learning 

Deep Learning [7] is a branch of Machine Learning, which is a type of feature learning based on 

Neural Networks (NNs). DNNs [8] performed linear transformations in order to automatically 

extract features that effectively represent the data, making them applicable to various domains. 

So far, there have been numerous deep neural network frameworks, which can primarily be 

categorized into two types: Convolutional Neural Networks (CNNs) [9] and Recurrent Neural 

Networks (RNNs) [10]. Among them, CNNs are widely used in computer vision tasks, such as 

image recognition, image classification, and object detection. RNNs, on the other hand, are 

frequently utilized in text and audio applications, such as natural language processing and 

speech recognition. 

 

2.1.1 Convolutional neural networks 

The Convolutional Neural Network (CNN) is a type of deep neural network framework that uses 

convolution operations to replace traditional matrix multiplication. The key features of CNNs are 

"weight sharing" and "preserving spatial information". The earliest convolutional neural network, 

LeNet-5, was proposed by Yann LeCun in 1998 [9]. The Convolutional Layer, Pooling Layer, and 

Fully Connected Layer in LeNet-5 have become the building blocks for subsequent 

convolutional neural network architectures. 

 

Although convolutional neural networks were initially applied to simple text recognition, the 

training of these models was challenging due to the limitations of computer hardware in the 

1990s. It wasn't until the 2000s that Kumar Chellapilla et al. [10] utilized GPUs to accelerate the 

training process of CNNs, and the availability of the large image database ImageNet [11] 

enabled the application of CNNs to a wider range of fields. Since then, there have been 
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numerous well-known CNN architectures, such as AlexNet [12], VGGNet [13], and ResNet [14], 

which have achieved great success in image classification tasks. The R-CNN series [15-18] and 

YOLOs [19-22] are widely recognized models for object detection tasks, while FCN [23], Unet 

[24], and DeepLabs [25-28] have broad applications in image segmentation." 

 

2.1.2. Related research of model acceleration and model compression 

Since the 2010s, Convolutional Neural Networks (CNNs) have begun to flourish and have been 

widely adopted in the field of computer vision. With the increasing demand for higher model 

performance, academics have proposed more advanced neural network architectures, leading 

to an increase in the number of network layers. However, the changes also resulted in issues 

regarding the efficiency of these networks, such as the memory space and inference time. These 

efficiency concerns need to be addressed if the models are to be deployed in real-world 

applications or on mobile devices. 

 

Recently, two main approaches, model acceleration and model compression have been 

proposed to address the efficiency issues. The methods of model acceleration aim to reduce the 

computational complexity of the model and accelerate its speed by designing a more efficient 

network computing method. In 2016, SqueezeNet proposed by Forrest et al. [29] initiated a 

major research direction for designing lightweight model structures. The Fire Module was 

introduced in SqueezeNet to replace traditional convolutional layers while achieving the same 

performance as AlexNet [12], with only 2.14% of AlexNet's parameters. In 2017, a research team 

at Google proposed a module called Depth-wise Separable Convolution in their paper 

MobileNet, which enabled a neural network model that could be used on mobile devices [30]. 

 

Additionally, the methods for model compression mainly focused on reducing the number of 

parameters in models through various techniques, thereby decreasing both storage and 

computational costs. Mainstream model compression methods include model pruning, 

knowledge distillation, and model quantization. Model pruning was first introduced by HanSong 

et al. [31, 32] in 2015 and it involves identifying and removing redundant parameters to 

compress the model. On the other hand, knowledge distillation, proposed by Hinton et al. [33], 

trained a smaller student model using a more complex and larger teacher model so that the 

student model can eventually perform similarly to the teacher model while having fewer 

parameters. Unlike model pruning, knowledge distillation does not cause irreversible damage to 

the model architecture. Finally, model quantization is the process of mapping values from one 



Vol.29 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
51 

domain of definition to another, typically from a higher-precision domain to a lower-precision 

domain. Since convolutional neural networks are relatively less sensitive to the noise generated 

by quantization, quantization is an effective method for reducing model storage [34]. 

 

2.2. Related research on construction safety 

In the construction industry, serious falling incidents are prone to occur when workers are at 

height. To prevent such incidents, workers are required to wear personal protective equipment 

(PPE) and various anti-fall facilities are set up in the work environment. PPE includes helmets, 

full-body safety harnesses, and hooks; while anti-fall facilities include guardrails, pillars, lanyards, 

and safety nets that provide support to workers when working at heights. In recent years, several 

studies have explored the application of deep learning technologies, particularly convolutional 

neural networks, in the field of construction safety [6]. 

 

In 2018, Qi Fang et al. [35] proposed a detection method for personal protective equipment 

using a combination of computer vision and an ASC classifier to identify the scene of aerial work. 

In the same year, Zdenek Kolar et al. [36] proposed a method for detecting safety barriers in 

images through the usage of deep convolutional neural networks and transfer learning. In 2020, 

Nipun D. Nath et al. [37] proposed a method based on YOLOV3 for real-time detection of 

personal safety equipment for construction workers. In 2021, Zifeng Wang et al. [38] utilized a 

semantic segmentation model for objects in construction sites. Since the use of semantic 

segmentation for automated visual understanding of construction sites has been rarely 

mentioned in previous literature, the authors employed the DeepLabV3+ model for the task of 

segmenting various objects categories in construction sites, along with a robotic system 

equipped with an RGB depth camera. This paper demonstrates the feasibility of using semantic 

segmentation models for construction sites, as well as the potential for automatic detection by 

robots. 

 

2.3. Safety guardrail 

The main detection target of this study is safety guardrails used at construction sites. According 

to article 19 in the Ministry of Labor’s Standards for Construction Safety and Health 

Installations [39], the roofs, steel beams, openings, stairs, and other equipment on the 

construction site that are higher than 2 meters must have guardrails installed as required by law. 

As outlined in Article 20 of the same Standards [39], guardrails consist of upper railings, middle 

railings, toe boards, and poles with a height of over 90 cm. The distance from the upper and 
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lower openings to the floor surface must not be greater than 55 cm. Guardrails can be made of 

wood or steel pipes, and regardless of the material used, the strength of its poles, rods, and 

anchors should ensure that the entire guardrail has the ability to support the upper railing, with 

a strength to withstand a load of 75 kilograms in any direction without significant deformation. 

 

Method 

This chapter will outline the structure of the study. First, the dataset utilized in this study, along 

with the data processing techniques such as data labeling, augmentation, and preprocessing, 

will be discussed in Section 3.1. In Section 3.2 and 3.3, the three models and two model 

compression methods used in this study will be detailed. Finally, the evaluation and validation 

metrics employed in this study will be described in Section 3.4. 

 

3.1. Data Collection 

The dataset used in this study was collected from the “2021 Artificial Intelligence Application 

and Promotion of Hazard Identification in Construction Engineering-Steel Structure Engineering 

Edge Computing Assisted Artificial Intelligence Safety Identification Technology Improvement 

Project” of the Occupational Safety and Health Administration at the Ministry of Labor [40]. The 

guardrail images were taken at construction sites that cooperated with the project. This section 

will be divided into three subsections. Section 3.1.1 will illustrate the data labeling method used 

in the study, Section 3.1.2 and Section 3.1.3 will illustrate the data augmentation and 

preprocessing methods adopted in the study. 

 

3.1.1 Data Labeling 

The dataset used in this study primarily consists of two colors of guardrails: yellow and silver. The 

toe board part of the guardrail at the construction site is often obscured by other objects or its 

color is too similar to the floor or steel laminate. To concentrate the model on identifying a 

single object type, this study only labels the railing part of the guardrail in the image. The 

labeling result is shown in Figure 1, where the green part represents the guardrail and the black 

part represents the background. 
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Figure 1. Dataset 

 

3.1.2. Data augmentation 

Due to the need for a large amount of data to avoid overfitting or underfitting when training 

deep learning models, in addition to the scarcity of data sources and the manpower required for 

data labeling, it is necessary to employ data augmentation to assist in the training process. Data 

augmentation is a technique that generates additional training data by using image processing 

or deep learning methods on a limited amount of original data. 

 

The data augmentation method used in this study is based on image processing, including ten-

fold image cropping and random affine transformation. Ten-fold image cropping is performed 

by cropping the center of the original image into five images of a fixed size ratio. These five 

augmented images are obtained by cropping the upper left, lower left, upper right, lower right 

and the center parts of an image. Finally, these five images are flipped horizontally. Random 

affine transformation is a method that randomly applies different affine transformations, such as 

translation, scaling, rotation, and flipping, to the training data in each iteration, providing the 

model with different data each time to achieve data augmentation. 

 

3.1.3. Data Preprocessing 

In this study, data filtering and image scaling were performed during the preprocessing stage. 

The data filtering process removes two types of data. The first type is images with a resolution 

lower than 1000 x 1000. Since the guardrails are small and thin, having a low resolution of the 
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original image can cause difficulties in data labeling and model training, so these images are 

discarded. The other type is images that don't contain guardrails after the data augmentation 

process. Since the proportion of guardrails in the original image is low, some images obtained 

from ten-fold cropping may not contain guardrails at all, so these images are also discarded. 

During the image scaling stage, all training data is scaled to a fixed size, based on the quality of 

platforms used in this study and the ease of model training. The dataset is also divided into 

training and testing sets. The training images are scaled to (512, 512) and (256, 256), and the 

testing images are scaled to (960, 720). 

 

3.2. Models 

The processed training data in this study will be used by various semantic segmentation models 

to segment the safety guardrails. The models used are Unet++, DeepLab V3+, and EDANet. The 

following subsections will provide a detailed explanation of each semantic segmentation model. 

 

3.2.1. Unet++ 

Unet++ is an improved model based on Unet [24], proposed by Zongwei Zhou et al. in 2018 

[41]. It was initially used for improving the fineness of medical image segmentation. The key of 

Unet++ is its denser residual connection compared to its predecessor, Unet. As the model is 

prone to losing details and features at different levels of the input image during the process of 

down-sampling and up-sampling, the denser residual connections provide the model with 

different levels of feature maps, leading to more accurate and refined outputs. 

 

3.2.2. DeepLab V3+ 

DeepLab V3+ is an improved semantic segmentation model based on DeepLab V3 [27], 

proposed by Liang-Chieh Chen et al. in 2018. The main difference from the previous version, 

DeepLab V3, is that it introduces an encoder-decoder architecture and improves its backbone 

network. The key of the model lies in the use of Atrous Spatial Pyramid Pooling (ASPP), which 

expands the receptive field of each layer of feature maps, thereby improving the overall ability of 

the model to capture detailed features. This also leads to a better result in segmenting the edges 

of objects in images. The decoder part of the model has discarded the use of bilinear 

interpolation for up-sampling and instead applies convolution operations to obtain features at 

different levels for multi-stage up-sampling to obtain the final output. 

 

3.2.3. EDANet 
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EDANet is a semantic segmentation model designed for real-time segmentation, proposed by 

Shao-Yuan Lo et al. in 2019 [42]. Compared to other semantic segmentation models, EDANet 

has lower computational complexity and a smaller number of parameters, allowing for real-time 

performance. Additionally, in order to maintain the accuracy of segmentation, EDANet adopts 

an asymmetric convolution structure, which combines dilated convolution and dense 

connections. 

 

3.3. Model acceleration and model compression 

In order to improve the operational efficiency of the model and maintain a satisfactory level of 

accuracy, this study adopts two methods of model acceleration and compression, namely Ghost 

Module and Model Pruning. The former aims to improve the convolution operation in the neural 

network, thereby reducing the computational cost of the overall model; while the latter aims to 

improve the running speed of the model by removing redundant weights. The following 

subsections will discribe each model acceleration and compression method in detail and 

illustrate how they are applied in this study. 

 

3.3.1. Ghost Module 

The Ghost Module is the core block in GhostNet, a lightweight neural network proposed by the 

Google research team in 2020 [43]. The Ghost Module is an optimized module that can replace 

the traditional convolution operation, which is usually computationally expensive. By applying 

the Ghost Module, the computational cost generated by the convolution operation is reduced, 

thereby improving the calculation speed and maintaining the accuracy of the model. 

 

In Ghost Module, the convolution operation is divided into three parts: 

(1) First, execute the convolution operation on the feature map whose input size (width, height, 

number of channels) is (w,h,c), and the output is (w^',h^',m), where m=n/s, s is the compression 

ratio, and n is the number of traditional convolution output channels. 

(2) Next, execute a linear transformation (Φ) on each channel of the feature map obtained in the 

previous step to obtain a feature map with the same output size (w^',h^',m). 

(3) Finally, execute matrix concatenation of the result from steps (1) and (2) to obtain a final 

output with a size of (w^',h^',n), which has the same size as traditional convolutional operation. 

 

The following formula below represents the calculation speed-up ratio (r_s) achieved after the 

traditional convolution operation was replaced by the Ghost Module: 
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The following formula represents the calculation compression ratio (rc) achieved after the Ghost 

Module replaces the traditional convolution operation: 

             𝑟𝑐 =
𝑛 ∙ 𝑐 ∙ 𝑘 ∙ 𝑘

𝑛
𝑠

∙ 𝑐 ∙ 𝑘 ∙ 𝑘 + (𝑠 − 1) ∙
𝑛
𝑠

∙ 𝑑 ∙ 𝑑
≈

𝑠 ∙ 𝑐

𝑠 + 𝑐 − 1
≈ 𝑠            (2) 

 

This study adopts the following changes to models introduced in Section 3.2: 

(1) Unet++: The convolutional layers in Unet++ are replaced with the Ghost Modules. As 

shown in Figure 2, Figure 2(a) is the original convolution block, and Figure 2(b) is the modified 

block. 

(2) DeepLab V3+: The traditional convolution layers in DeepLab V3+ is replaced with the 

Ghost Modules. In addition, since the convolution used in the backbone network is dilated 

convolution, it remains unchanged. The modified model architecture is shown in Figure 3. 

(3) EDANet: The down-sampling block and the traditional convolutional layer in the EDA 

blocks are replaced with the Ghost Modules. Figure 4 illustrates the modified architecture of the 

down-sampling block, while Figure 5 shows the modified architecture of the EDA block. 

 

 

Figure 2. modified convolution block in Unet++ 
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Figure 3. modified model architecture of DeepLab V3+ 

 

Figure 4. modified down-sampling block of EDANet 
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Figure 5. modified EDA block of EDANet 

 

3.3.2. Model Pruning 

Model pruning is a common method for model compression that involves finding and removing 

less important weights in the model to achieve compression.  

 

In this study, the three steps of model pruning proposed by Han Song et al. [32] are used for 

model compression to ensure that the model retains a certain level of accuracy after some 

weights have been removed. The steps include initializing and training the model in a 

conventional manner, applying model pruning to set a certain percentage of weights in the 

model to zero, and retraining the pruned model to improve its accuracy. This process of pruning 

and retraining can be repeated multiple times until the model converges. 

 

In terms of semantic segmentation, as the convolution operation holds the majority of 

parameters, this study focuses primarily on model pruning for each convolution layer in the 

models. For the pruning stage, two methods are adopted to select the weights to be removed in 

the models. The first method is Random selection, which prunes weights of the models 
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randomly, and the other method is to identify and prune the less important weights based on 

the L1 norm. 

 

3.4. Validation and evaluation metrics 

This section will detail the evaluation metrics used in this study, including Intersection over 

Union (IoU), which is widely used in semantic segmentation model studies, Floating-point 

Operations (FLOPs) for measuring the acceleration and compression effects of the model, and 

Inference Time. 

 

3.4.1. Intersection over Union 

Intersection over Union, or IoU for short, is a widely used metric in semantic segmentation 

model evaluations. It measures the accuracy of the models’ prediction by calculating the 

proportion of overlap between the predicted and ground truth segmentations for each 

category. The calculation formula is as follows: 

 

𝑰𝒐𝑼𝒄𝒍𝒂𝒔𝒔 =
𝒕𝒂𝒓𝒈𝒆𝒕 ∩ 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

𝒕𝒂𝒓𝒈𝒆𝒕 ∪ 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏
=

𝑻𝑷

𝑭𝑵 + 𝑭𝑷 + 𝑻𝑷
           (𝟑) 

 

Where TP refers to the true positive, which represents the total number of pixels that are 

correctly predicted as belonging to a certain category in an image; FN represents the false 

negative, which indicates the total number of pixels that actually belong to the category but 

were not correctly predicted; and FP refers to the false positive, representing the total number of 

pixels that do not belong to the category but were predicted as belonging to it. The calculated 

IoU value will be between 0 and 1, with 0 indicating that no pixels were correctly predicted, and 

1 indicating that the predictions were a perfect match. 

 

3.4.2. Floating-point operations 

Floating-point operations, or FLOPs for short, represent the total number of floating-point 

operations per second for a model or an algorithm. It is an important indicator to measure the 

complexity of a deep learning model or algorithm. The FLOPs unit used in this study is 

gigaFLOPs (GFLOPs). 

 

3.4.3. Inference time 



Vol.29 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
60 

Inference time is the time elapsed from input to the generation of output when a trained deep 

learning model is applied to new data. The length of time is influenced by both the complexity 

of the model and the performance of the hardware. In this study, inference time is utilized as one 

of the metrics to compare the acceleration and compression of each semantic segmentation 

models. The unit used is frames per second (FPS), which indicates the total number of inferences 

per second made by the model. In general, a model can be considered suitable for real-time 

calculation when its FPS reaches 30 or higher. 

 

3. Results and Discussion  

This chapter presents the experimental results based on the research method outlined in 

Chapter 3. Section 4.1 provides details of the dataset, experimental environment, and model 

configuration; while Section 4.2 uses the evaluation metrics mentioned in the previous chapter 

to analyze and present the results of various experiments. 

 

4.1. Experimental environment 

4.1.1. Dataset 

In this study, a total of 88 original guardrail images were collected and used as the dataset. Out 

of the 88 images, 12 were designated as test data and the remaining 73 were used for training. 

After data augmentation and preprocessing, the training data set was increased to 792 images. 

However, 11 images were removed from the dataset due to low resolution or absence of 

guardrails after undergoing 10-fold image cropping. The details of the guardrail dataset are 

provided in Table 1.  

Table 1. overview of the dataset 

Category Number of Images 

Original data 

before 88 

deleted 3 

after 85 

Testing data 12 

Training data 

Data augmentation 803 

deleted 11 

after 792 

 

 



Vol.29 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
61 

4.1.2. Model configuration 

The computer operating system utilized in the experiments in this study is Ubuntu 16.04. The 

graphics card used is NVIDIA GeForce RTX 2080 Ti, and the RAM is 16GB. The hyperparameters 

and input image size during the training of each semantic segmentation model in the following 

experiments are described in Table 2. 

 

Table 2. Overview of model configuration 

Model Type Value 

Unet++ Number of epochs 25 

Batch size 8 

Learning rate 0.0005 

Input shape (256, 256) 

DeepLab V3+ Xception Number of epochs 25 

Batch size 8 

Learning rate 0.0005 

Input shape (256, 256) 

DeepLab V3+ MobileNet V2 Number of epochs 25 

Batch size 16 

Learning rate 0.0005 

Input shape (512, 512) 

EDANet Number of epochs 25 

Batch size 16 

Learning rate 0.0005 

Input shape (512, 512) 

 

4.3. Experimental result 

The experiments in this study will be divided into three parts in order to explore the balance 

between accuracy and operational efficiency of different semantic segmentation models. First, 

we will compare the segmentation results of the four semantic segmentation models outlined in 

Section 3.2. Secondly, we will compare the performance of the combination of the four models 

with the model acceleration method described in Section 3.3.1. Finally, we will evaluate the 

effectiveness of the model compression method and different compression ratios described in 

Section 3.3.2 on the models with better performance from the previous experiments. 
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4.3.1. Semantic segmentation model comparison experiment 

This section focuses on the comparison of the segmentation performance of different semantic 

segmentation models, and the impact of varying input sizes on these models. The models being 

compared are the four models introduced in Section 3.2: Unet++, DeepLab V3+, and EDANet, 

where DeepLab V3+ contains two backbone neural networks, MobileNet V2 and Xception. 

 

In this section, the impact of using images of varying input sizes on the segmentation results will 

be examined. This experiment is conducted for two reasons. Firstly, hardware limitations and 

model size may restrict the use of high-resolution images during training. If an image with a 

higher resolution than the original training image is used in the testing stage, it may negatively 

affect the model's segmentation performance. Secondly, as the guardrails are small objects, it is 

anticipated that by resizing the original data to match the training input size, the model will be 

able to predict the guardrail more accurately. The experiment compares the results of four 

models using two different testing sets, with image sizes of (960, 720) referred to as the control 

group and the same size as the training input referred to as the experimental group. 

 

The experiment compares the performance of four semantic segmentation models using two 

sets of testing images with different sizes, and the output will be rescaled to the size as same as 

the original image (960, 720). The evaluation metric used in this experiment is Intersection over 

Union (IoU). The results, as shown in Table 3, indicate that for the DeepLab V3+ model with 

Xception as the backbone, using images of the same size as the original training images leads to 

a higher IoU value of 0.5599 compared to 0.3973 for the control group. This suggests that using 

images of the same size in the inference stage improves the performance of semantic 

segmentation. The reason for this result is likely due to the limitations of the hardware and the 

large number of parameters in the DeepLab V3+ model, which cannot accurately predict the 

pixel position of the guardrail when using larger images than the original training data. 

However, for the other three models, using images of the same size as the original training 

images resulted in improved segmentation results. As an example, Figure 6 compares the results 

of the four models, where (a) represents the output of the control group and (b) represents the 

output of the experimental group." 

 

According to the experimental results in this section, for subsequent experiments, the DeepLab 

V3+ model using Xception as the backbone will be tested on images of the same size as the 
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original training images. Meanwhile, the other three models, Unet++, DeepLab V3+ with 

MobileNet V2 as the backbone, and EDANet, will be tested on images with a size of (960, 720). 

 

Table 3. Result of semantic segmentation model comparison experiment 

Model Size of Training Experimental IoU Control IoU 

Unet++ (256, 256) 0.2803 0.5380 

DeepLab V3+ Xception (256, 256) 0.5599 0.3973 

DeepLab V3+ MobileNet V2 (512, 512) 0.4421 0.5675 

EDANet (512, 512) 0.3134 0.5411 

 

 

Figure 6. Result of semantic segmentation model comparison experiment 

 

4.3.2. Model acceleration comparison experiment 

This section focuses on evaluating the effectiveness of the Ghost Module, a model acceleration 

method outlined in Section 3.3.1, on improving the efficiency of semantic segmentation models 

while retaining a certain level of accuracy. The section is divided into two sub-sections to 

elaborate on the two experiments. The impact of the model acceleration on the model's 

segmentation performance is discussed in detail in Section 4.3.2.1; while the operation speed 

comparison on different devices is described in detail in Section 4.3.2.2. There are eight models 

compared in this section, including the four models from Section 4.3.1, and four models with the 

traditional convolution operations replaced by the Ghost Module. The four models are Unet++ 

with Ghost Module, DeepLabV3+ Xception with Ghost Module, DeepLabV3+ MobileNetV2 with 

Ghost Module, and EDANet with Ghost Module, referred to as Unet++ G, DeepLabV3+ XG, 

DeepLabV3+ MG, and EDANet G respectively. The comparison and evaluation metrics for these 

models include the number of model parameters, IoU, FLOPs, and inference time. 

 

First of all, a comparison of model parameters was performed. Table 4 presents a comparison of 

the parameters of the original models and the models after employing the Ghost Module. As 
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shown in Table 4, except for the DeepLabV3+ model with Xception as the backbone, the models' 

parameters significantly reduced after employing the Ghost Module. Among them, Unet++ and 

EDANet had the most noticeable reductions of 46.49% and 34.84%, respectively. In the case of 

the DeepLabV3+ model, the significant use of dilated convolution in its backbone network 

limited the reduction in model parameters. 

 

Table 4. Comparison of model parameters 

Model Number of Parameters Ratio 

Unet++ 8,596,703 
-46.49% 

Unet++ G 4,599,921 

DeepLabV3+ Xception 54,607,521 
+7.78% 

DeepLabV3+ XG 58,854,241 

DeepLabV3+ MobileNetV2 5,810,913 
-11.75% 

DeepLabV3+ MG 5,128,001 

EDANet 681,367 
-34.84% 

EDANet G 443,970 

 

4.3.2.1. Segmentation performance comparison experiment 

The training results are presented in Table 5. The EDANet, Unet++, and DeepLabV3+ with 

MobileNetV2 as the backbone models show some improvement after the use of the Ghost 

Module. However, the DeepLabV3+ model with Xception as the backbone does not show any 

improvement in segmentation performance. 

 

Table 5 provides the results of FLOPs and inference time. Unet++ significantly reduces the 

number of FLOPs by over 50%, but its improvement in inference time is limited and does not 

meet the requirement for real-time segmentation. EDANet, on the other hand, reduces FLOPs by 

approximately 30% with the Ghost Module, resulting in a segmentation speed of 93 images per 

second. The addition of the Ghost Module to the DeepLabV3+ model with MobileNetV2 as the 

backbone results in a slight increase in both FLOPs and inference time. Meanwhile, the 

DeepLabV3+ model with Xception as the backbone shows a decrease in FLOPs but no 

significant change in inference time after the Ghost Module 

 

Figure 7 presents the output results of eight models, with (a) being the output result of the 

original models and (b) being the output result of the models with Ghost Module. As shown as 



Vol.29 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
65 

Figure 7, the employment of the Ghost Module in EDANet and Unet++ has resulted in the 

reduction of noise in the segmentation performance and improved coherence of the 

predictions. Additionally, the DeepLabV3+ model with MobileNet V2 as the backbone neural 

network demonstrates improved ability in capturing thinner guardrails. 

 

Based on the above analysis, the replacement of traditional convolution operations with the 

Ghost module to accelerate the model has shown to be beneficial in terms of segmentation 

performance and operational efficiency. However, the DeepLabV3+ model using Xception as the 

backbone has not demonstrated improved results in terms of segmentation performance and 

running speed, even after being accelerated. As such, this model will not be used in further 

experiments. 

 

Table 5. Result of segmentation performance comparison experiment 

Model IoU 
FLOPs 

(Unit: GMac) 

Inference time 

(Unit: FPS) 

Unet++ 0.5380 196.73  6.02 

Unet++ G 0.6349 70.11  10.72 

DeepLabV3+ Xception 0.5599 82.96  13.72 

DeepLabV3+ XG 0.5050 78.54  13.29 

DeepLabV3+ MobileNetV2 0.5675 29.13  50.58 

DeepLabV3+ MG 0.5978 18.56  56.47 

EDANet 0.5411 4.46  58.01 

EDANet G 0.6503 3.13  93.02 

 

 

Figure 7. Result of segmentation performance comparison experiment 
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4.3.2.2. Comparison experiment of different devices 

This section compares the computational speed of the eight models discussed previously 

through two different devices, namely a server and an edge device. The server used in this study 

is the same device used for training, while the edge device is the NVIDIA Jetson Nano. The 

purpose of this experiment is to compare the inference time required by the models for image 

segmentation on each device and to assess the effectiveness of the model acceleration method.  

 

The experimental results are shown in Table 6. The four models using the lightweight network 

on the server can achieve real-time segmentation performance, while the Unet++ model with 

more complex models and the DeepLabV3+ model using Xception as the backbone cannot 

achieve real-time segmentation. On the other hand, in terms of the edge device, since the 

memory space of the Jetson Nano is not enough to support complex models for high-resolution 

image segmentation, certain models and image sizes cannot be loaded. It can be seen from 

Table 6 that the ranking of the obtained running results is similar to that of the server side, but 

due to the limitation of the device itself, although the models were accelerated, there is still no 

model that can be used for real-time segmentation. 

 

Table 6. Result of comparison experiment of different devices 

Model 

Inference Time (Unit: FPS) 

Size of Input Image 

Server Edge Device 

(960, 720) (960, 720) (480, 640) (256, 256) 

Unet++ 6.0237   0.0636 

Unet++ G 10.7193   0.0854 

DeepLabV3+ Xception 13.7231  0.0171 0.0989 

DeepLabV3+ XG 13.2908  0.0154 0.0801 

DeepLabV3+ 

MobileNetV2 

50.5817 0.0277 0.0679 0.2394 

DeepLabV3+ MG 56.4653 0.0321 0.0850 0.2187 

EDANet 58.0046 0.0298 0.0985 0.2413 
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EDANet G 93.0233 0.0628 0.1150 0.2488 

 

4.3.3. Model compression comparison experiment 

This section discusses the effect of model pruning on the operational efficiency and 

performance of semantic segmentation models. In this experiment, two kinds of model pruning 

will be used with different compression ratios. In addition to the three baseline models involved 

in the experiment, Unet++, DeepLabV3+ using MobileNet V2 as the backbone, and EDANet, as 

well as three models with Ghost Module, are Unet++ with Ghost module, DeepLabV3+ 

MobileNetV2 with Ghost module and EDANet with Ghost module, which will be referred to as 

Unet++ G, DeepLabV3+ MG and EDANet G below. After model pruning, the model will lose a 

certain degree of segmentation ability. Therefore, in the experiments in this section, the model 

will be pruned three times, and it will be retrained with four iterations to maintain the 

segmentation ability of the model after each pruning. In this section, model parameters, IoU, 

and FLOPs will be used as the measurement and evaluation metrics of the experiment. 

 

Table 7 shows the parameters of each model after pruning in different ratios, and Table 8 shows 

the FLOPs of each model after compression. As can be observed from both Tables 7 and 8, due 

to the varying proportion of convolutional layers used in different models in the overall 

architecture, the reduction in model parameters and FLOPs is slightly lower than the pruning 

ratio. 

 

Table 7. The number of parameters in the model compression comparison experiment 

Model 

Pruning Ratio 

Original 0.1 0.3 0.5 0.7 

Parameter 

Num. 

Parameter 

Num. 

Parameter 

Num. 

Paramete

r Num. 

Paramet

er Num. 

Unet++ 8,596,703 7,727,227 6,012,115 4,299,150 2,586,37

5 

Unet++ G 4,599,921 4,097,398 3,188,380 2,274,843 1,369,17

0 

DeepLabV3+ 

MobileNetV2 

5,810,913 5,094,426 3,965,818 2,842,801 1,720,15

2 
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Table 8. The FLOPs in model compression comparison experiment 

Model 

Pruning Ratio 

Original 0.1 0.3 0.5 0.7 

FLOPs FLOPs FLOPs FLOPs FLOPs 

Unet++ 196.73  176.98 137.65 98.32 58.99 

Unet++ G 70.11  62.88 48.90 34.93 20.94 

DeepLabV3+ 

MobileNetV2 

29.13  26.17 20.35 14.54 8.72 

DeepLabV3+ MG 18.56  16.67 12.97 9.26 5.56 

EDANet 4.46  4.01 3.12 2.23 1.34 

EDANet G 3.13  2.82 2.19 1.56 0.94 

 

In the first experiment, model pruning was performed by randomly selecting weights from the 

convolutional layers of the model. The pruning ratios used in this stage were 0.1, 0.3, 0.5, and 

0.7. The results of the IoU for each model in the test dataset are shown in Table 9. It can be 

observed that removing a certain portion of the model's weights can still maintain its 

segmentation performance. However, since the random method was used to select the weights 

to be removed, the model's important weights for segmentation may be removed when the 

pruning ratio is high, resulting in a decline in segmentation accuracy. 

 

 

 

 

 

DeepLabV3+ MG 5,128,001 4,499,743 3,503,118 2,512,371 1,521,85

4 

EDANet 681,367 613,862 478,853 343,842 208,833 

EDANet G 443,970 399,029 311,638 224,252 136,863 
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Table 9. Results of random in model compression comparison experiment 

Model 

Pruning Ratio 

Original 0.1 0.3 0.5 0.7 

IoU IoU IoU IoU IoU 

Unet++ 0.5380 0.5477 0.5316 0.5186 0.4916 

Unet++ G 0.6349 0.6371 0.6128 0.6433 0.6072 

DeepLabV3+ 

MobileNetV2 

0.5675 0.5541 0.5532 0.5887 0.5051 

DeepLabV3+ MG 0.5978 0.5892 0.5669 0.5722 0.5577 

EDANet 0.5411 0.5539 0.5305 0.5675 0.5114 

EDANet G 0.6503 0.5794 0.6043 0.6201 0.6114 

 

Next, in order to avoid removing important weights when the model is pruned, the second 

experiment utilized the L1 norm to select the less important weights in the model for pruning.  

The pruning ratio used in this stage is the same as in the previous experiment. The aim was to 

investigate whether weight selection based on their significance would result in improved 

segmentation accuracy and computing speed compared to random selection. The results are 

shown in Table 10. When the pruning ratio was 0.1 and 0.3, each model has a similar level of 

segmentation ability as before pruning. When the compression ratio reaches 0.5, except for the 

EDANet and DeepLabV3+ models that use Ghost Module, the segmentation capabilities of the 

other models have improved. Finally, when the compression ratio reaches 0.7, most models get 

a higher value of IoU. among these, the ability of Unet++ to improve is the most prominent with 

nearly 0.7 IoU. 

 

Table 10. Results of L1 norm in model compression comparison experiment 

Model 

Pruning Ratio 

Original 0.1 0.3 0.5 0.7 

IoU IoU IoU IoU IoU 
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Unet++ 0.5380 0.5156 0.5323 0.5693 0.5636 

Unet++ G 0.6349 0.6172 0.6399 0.6718 0.6991 

DeepLabV3+ 

MobileNetV2 

0.5675 0.5424 0.5418 0.5831 0.5533 

DeepLabV3+ MG 0.5978 0.5579 0.5758 0.5663 0.6145 

EDANet 0.5411 0.5559 0.5634 0.5832 0.5887 

EDANet G 0.6503 0.5891 0.6201 0.6168 0.6335 

 

In conclusion, the model contains redundant weights. Regardless of the method used to identify 

which weights should be removed, fine-tuning the remaining weights can still result in a notable 

improvement in segmentation performance and a reduction in model complexity. 

 

4. Conclusion and Future Work 

5.1. Conclusion 

This study applies several semantic segmentation models to detect guardrails in construction 

sites and proposes a combination of model acceleration and compression methods to enhance 

the computational efficiency of semantic segmentation models, which typically have a large 

number of parameters and high complexity. This study is expected to assist the site personnel in 

assessing the positioning and placement of guardrails according to regulations, thereby 

reducing the rate of accidents at construction sites. Furthermore, this study also reduces the 

computing power requirements of edge devices and enables further automation of industrial 

safety protection. 

 

First of all, this study applies four semantic segmentation models (Unet++, DeepLabV3+ with 

Xception as the backbone, DeepLabV3+ with MobileNetV2 as the backbone, and EDANet) to 

detect safety guardrails. The Ghost Module is used to reduce model complexity and the number 

of parameters in the segmentation models. The results show that Unet++ had the largest 

reduction in parameters (over 40%) and increased IoU in guardrail segmentation to 0.65 after 

applying the Ghost Module. The models also experienced more than a 110% increase in 

computing speed on edge devices. This study also prunes the models using L1 norm, and find 
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that most models perform better after removing a certain number of parameters, with Unet++ 

achieving an IoU of nearly 0.7. In conclusion, the semantic segmentation models can effectively 

improve segmentation performance and computational speed through the acceleration of the 

Ghost Module and model pruning, with Unet++ showing the most refined performance and 

EDANet having both adequate performance and high computational efficacy. 

 

5.2. Future work 

The dataset used in this study only includes a single type of safety guardrails. In order to extend 

the proposed model to other types of guardrails, additional relevant images need to be 

collected. This study can be further extended to encompass the image segmentation of other 

static objects in construction sites, such as safety lanyards and safety nets. Furthermore, other 

fields that require real-time detection can also utilize the model acceleration and compression 

techniques to enhance the accuracy and computational speed of the segmentation or detection 

models, beyond the construction field. 
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