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Abstract: 

To investigate the effects of various parameters on ferrofluid lubricated squeeze film bearing 

with an upper spherical surface and a lower flat porous plate, a mathematical model has been 

developed. This study examines the effect of slip velocity at the film-porous interface as 

suggested by Sparrow et al. [1] and modified by Shah et al. [4]. Here, the Jenkins model was used 

to describe ferrofluid flow behavior. In ferrohydrodynamics, the continuity equation and the 

equations of the ferrohydrodynamics theory were used to derive a modified Reynolds's type 

equation governing squeeze film pressure. From the analytical development, expressions for 

non-dimensional film pressure, load-carrying capacity, and response time using a modified 

Reynolds-type equation were derived. It was investigated how permeability, minimum film 

thickness, slip velocity, material constant, and magnetization parameter affect the present 

mechanism. The results of an investigation indicate that non-dimensional film pressure, load-

carrying capacity, and response time decreased with increasing values of the radial permeability 

parameter, while they increased with increasing values of the axial permeability parameter. In 

addition, non-dimensional load-carrying capacity increased and response time decreased as 

minimum film thickness increased. Also, in Jenkins model, non-dimensional load carrying 

capacity decreased with increasing slip parameter or material parameter values. 
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Nomenclature 

a Radius of the sphere (m) 

h Film thickness defined in Eq. (1) (m) 

h2         Initial film thickness (m)    

*

2h  Non-dimensional initial film thickness as in Eq. (37)    

hm   Minimum film thickness (m) 

mh  ,/ dtdhm
 Squeeze velocity (m s

-1
) 
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*

mh  Non-dimensional minimum film thickness defined in Eq. (30) (m) 

H Strength of variable magnetic field (Am
-1

) 

H Magnetic field vector 

0H         Thickness of the porous layer (m) 

*H  Non-dimensional thickness of the porous layer defined in Eq. (30). 

K Defined in Eq. (3) (A
2
m

-4
) 

M   Magnetization vector 


M  Co-rotational derivative of M   

sM       Saturation magnetization 

M      Magnitude of magnetization vector 

p  Film pressure (N m
-2

) 

*p  Non-dimensional film pressure defined in Eq. (30) 

q Fluid velocity vector, ms
-1 

r Radial co-ordinate (m) 

R          r/a, non-dimensional radial co-ordinate defined in Eq. (30) 

s         Slip parameter defined in Eq. (14)  (m
-1

). 
*s  Non-dimensional slip parameter for *p  

and *W defined in Eq. (30) 

*

1s  Non-dimensional slip parameter for *t  defined in Eq. (37) 

 t Time (s) 
*t  Non-dimensional response time as in Eq. (37) 

W  Load carrying capacity defined in Eq. (36) (N) 

*W  Non-dimensional load carrying capacity defined in Eq. (36) 

z Axial co-ordinate (m) 

 

 

Greek symbols 

  Fluid viscosity (N s m
-2

) 

r  Porosity of the porous region in the radial direction 

  Fluid density (N s
2
 m

-4
) 

0  Permeability of free space (N A
-2

) 

0  Initial susceptibility of fluid 

  Magnetic susceptibility 

   Non-dimensional magnetization parameter for 
*p and  *W defined in Eq. (30) 

*

1   
Non-dimensional magnetization parameter for *t defined in Eq. (37) 

            Standard deviation 

r  Permeability of the fluid in the radial direction of the porous region (m
2
) 

z  Permeability of the fluid in the axial direction of the porous region (m
2
) 

*

r  
Non-dimensional radial permeability parameter of the porous region for *p and              

 
*W  is defined by Eq. (30)  

*

z         Non-dimensional axial permeability parameter of the porous region for *p and              



Vol. 29 计算机集成制造系统 ISSN 

No. 7 Computer Integrated Manufacturing Systems    1006-5911 

 

Computer Integrated Manufacturing Systems 78 

 *W defined in Eq. (30) 

r         Non-dimensional radial permeability parameter of the porous region for *t  

 defined in Eq. (37)     

z         Non-dimensional axial permeability parameter of the porous region for *t  

 defined in Eq. (37) 

r  In Eq. (30), the non-dimensional quantity is defined  

z  In Eq. (30), the non-dimensional quantity is defined 

*

r  Non-dimensional quantity defined in Eq. (37) 

*

z  Non-dimensional quantity defined in Eq. (37) 
2         Material constant of Jenkins model 

(m
3
A

-1 
s

-1
) 

2   Non-dimensional material constant defined in Eq. (30) 


       another material constant of Jenkins model 

*  as defined in Eq. (30) 

*

1  
as defined in Eq. (37) 

 

1. Introduction 

A ferrofluid can be used as a lubricant to eliminate the shortcomings of previous porous 

bearings studies. Ferrofluid [2] is a colloidal dispersion containing fine ferromagnetic particles, 

like ferric oxide, cobalt, and magnetite in a non-conducting liquid carrier. A suitable surfactant is 

added to the carrier liquid to form a coating layer that prevents the particles from flocculating. In 

the presence of an external magnetic field, magnetic fluid experiences magnetic body forces. In 

the lack of a magnetic field, the magnetic moments of the particle are randomly oriented and 

the fluids behave like normal fluids. In a ferrofluid, approximately 85% carrier liquid, 10% 

surfactant, and 5% magnetic solids are present. When used as a lubricant, ferrofluid has many 

advantages. There is no rubbing between solid materials, no external lubrication is required, and 

no side leakage occurs with ferrofluids. These properties make ferrofluids useful for sealing, 

sensors, filtering devices, elastic dampers, lubrication etc. 

 

Using ferrofluid as a lubricant, Shah and Bhat [3] investigated the lubrication performance of a 

squeeze film between circular plates with a porous matrix attached to the upper plate using 

ferrofluid as a lubricant. Consideration of the effect of rotation is also made. Results show that 

an increase in magnetization parameters increase bearing characteristics such as pressure, load 

carry capacity, and response time. They also showed that an increase in load-carrying capacity 

and pressure are entirely dependent on magnetization, while increases in response time depend 

on fluid inertia, speed of rotation, and magnetization. Under the presence of a ferrofluid, Shah 

and Kataria [4] studied squeeze film-bearing with a spherical upper surface and a flat porous 

plate. Their theoretical study investigated the impact of squeeze film height, permeability, and 

matrix width on squeeze film performance. In their study, the researchers concluded that non-

dimensional load-carrying capacity loss due to porosity is almost zero when ferrofluid is used as 
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a lubricant at smaller values of thickness and radial permeability.The theoretical work on circular 

discs porous squeeze film bearings of various shapes like exponential, secant, and parallel was 

done by Shah and Patel [5].Using the Reynolds equation, different circular porous squeeze film-

bearing design systems (e.g., exponential, secant, and parallel (flat)) were studied and compared 

for load-carrying capacity. According to the findings of the investigation, uniform magnetic 

fields do not affect the performance of the bearing systems. All the above investigators [3-5] 

have used the N-R model [6] for ferrofluid lubrication under a variable magnetic field.  

 

Neuringer-Rosensweig (N-R) [6] developed a fairly simple model to examine the effect of 

magnetic body force, assuming that the magnetization vector M is parallel to the applied 

magnetic field vector H. Jenkins [7] model could be regarded as an extension of the N-R model. 

The N-R model modifies the pressure while the Jenkins model modifies both the pressure and 

velocity of the magnetic fluid through an additional term pertaining to the co-rotational 

derivative of magnetization which is missing in the N-R model. Ram and Verma [8] analyzed the 

performance of porous inclined slider bearing using Jenkins' ferrofluid flow model [7], which is 

based on Maugin's [9] simplification of HM = . Load carrying capacity was found to increase 

with increasing fluid magnetization and material constant. Shah and Bhat [10] examined the 

effect of ferrofluid on a slider bearing with a circular convex pad. In their study, researchers 

indicate that a stronger magnetic field can increase the bearing's pressure and load capacity 

considerably. However, material parameters do not significantly affect them. Shah and Patel [11] 

studied the effects of slip and squeeze velocity on a porous pivoted slider bearing lubricated 

with ferrofluid. In the study, it was found that dimensionless load-carrying capacity increased as 

squeeze velocity increased and sliding velocity decreased. An extensive review of ferrofluid 

lubrication with several experimental studies was presented by Huang and Wang [12].Using the 

Jenkins model, Laghrabli et al. [13] investigated hydrodynamic ferrofluid lubrication for finite 

journal bearings. The magnetic fluid was generated by displaced finite wire. A comparison was 

also made between the results and the N-R model. Patel and Kataria [14] presented the Jenkins' 

model for ferrofluid flow between rotating upper spherical surfaces and circumferentially rough 

lower plate, and according to the results, the Jenkins model is more efficient than the NR model 

at carrying non-dimensional loads. Currently, there is no information on how Jenkins' model 

impacts the mechanism [4]. Therefore, further study is of interest to get insight into the 

phenomenon. 

 

With this motivation, the present study derived a modified Reynolds equation for a ferrofluid 

lubricated squeeze film bearing consisting of a spherical upper surface and a porous lower 

surface considering the effects of porosity, squeeze velocity, and slip velocity at the interface of 

the porous layer and film region using the Jenkins ferrofluid flow model. The validity of Darcy's 

law is assumed while deriving the modified Reynolds equation. Here, water-based ferrofluid is 

used. A modified Reynolds's type equation, which is a differential equation in pressure under 

certain boundary conditions, can be deduced from Navier-Stokes equations along with a 

continuity equation. Also, equation of continuity is considered in the film as well as the porous 
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region. From the analytical development, expressions for non-dimensional film pressure and 

load-carrying capacity of the squeeze film are derived as a function of the non-dimensional 

parameters such as slip, material constant, magnetization, radial, and axial permeabilities. In this 

study, the non-dimensional film pressure, load-carrying capacity, and response time were 

derived and calculated numerically. Graphs depict the results. Table 1 defines the symbols used 

in the paper. Effects of various non-dimensional parameters like radial permeability, axial 

permeability, and thickness of porous layer are studied on p*, W*, and t*. Moreover, the effect of 

minimum film thickness is studied on W*and t*. Effect of slip on W* is illustrated by the graphs.   

 

2. Formulation of the Mathematical Model 

As shown in Figure 1, the physical configuration of the problem under consideration is arranged 

as a rigid sphere with radius a approaching a flat porous plate formed by attaching a layer of 

porous material of thickness 
0H  

to an impermeable flat surface. Self-lubrication is one of the 

advantages of porous layers. 

 

A ferrofluid lubricant fills the region between the sphere and flat porous plate called the fluid 

film thickness. Film thickness h [4, 14, 15] is given by the expression 

            

2

; ,
2

m

r
h h r a

a
= +                                                       (1) 

where hm is the minimum film thickness and r is the radial coordinate. 

 

The upper surface (sphere) moves normally towards the lower flat porous plate with a uniform 

velocity called squeeze velocity 

   
,

dt

dh
h m

m =                                                                   (2) 

where t stands for time in seconds. 

Strength H of a variable magnetic field [4, 14, 15] is given by  
2

2 ( )
,

Kr a r
H

a

−
=                                                                                      (3) 

K being a quantity chosen to fit the dimensions of both sides of Eq. (3). 

 

2.1 Squeeze film 

In 1972, Jenkins developed a simple model to express magnetic fluid flow [7]. Jenkins' theory 

states that the Neuringer-Rosensweig model was not merely generalized, but also modified in 

terms of both the pressure and velocity of the magnetic fluid. 

 

According to the Jenkins model, flow equations using the cylindrical frame of reference can be 

presented as follows [11, 14, 19]:  

2 2

0( ) ( ) ,p
t M

       
+ • = − +  + • +     

   

q M
q q q M H M

  

(4)

    0 , • =q         (5) 

0 , =H                     (6)
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     ( 4 ) 0 ,• + =H M         (7) 

      ( )

2 2

2

0

2
4 ,s

s

MD

M M MDt


 



= − − +
−

M M
M H                                                                         (8) 

( ) .
2

1
Mq

M
M +=

Dt

D       
(9)

 

 

In the present analysis, the direction of the magnetization of a fluid is always in the direction of 

the local magnetic field [11, 14, 18], so Eq. (9) is replaced by  

,=M H                   (10) 

and   ( )
1

2

 =  M q M,
                 (11) 

Also,   
. . .

( , , ) ( , , ),r r z u rv w= =q                 (12) 

where ( , , )r z are cylindrical polar co-ordinates and dot (.) represents derivative with respect to 

t.Also, a radial, tangential, and axial velocity component of q is given by u, v, and w. 

 

For the derivation, laminar flow and fluid incompressibility are assumed, porous matrix is 

homogeneous and isotropic, all inertia terms are neglected because viscous forces are greater 

than inertia forces. Flow within the film and porous region are axisymmetric, derivatives of fluid 

velocities across the film predominate, and velocities are continuous at the interface between 

the porous layer and film regions. 

 

Based on the simplified assumptions and using Eqs. (4) to (9), a two-dimensional equation 

governing the distribution of pressure p in the r-direction is given by [11, 19]. (Appendix B) 

2

02

1 1
,

2
1

2

u
p H

z z rH
  

 



     
= −   

      
− 

                                                       

(13)

 

where H is the magnetic field strength. By solving Eq. (13) under the boundary conditions [1, 4, 

23] 

       z

u

s
u




=

1 , when 0z =  ;
5

1 rr

s


=  (slip boundary condition)               (14) 

 

And 0u = , when hz = ,                     (15) 

 

we obtain a velocity profile along the film region as follows (Appendix A) 

2

02

( )( ) 1
,

2
2 (1 ) (1

2

h z shz z h
u p H

H r
sh

 
 




 
 + + −    

= −   
   + −

  

                (16) 

where s: slip parameter, 
r : permeability of the porous region in the radial direction,

r : 

porosity of the porous region in the radial direction. 

 

Eq. (16) is integrated over the film region h, i.e., 0 to h, with respect to z, we obtain 
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( )

3
2

02

0

(4 ) 1

2
12 1 1

2

h
h sh

u dz p H
rH

sh

 
 




 
 

+    
= −   

    + −    


.                                           (17) 

 

Using continuity equation in cylindrical polar coordinates and integrating it with respect to z 

over the film thickness [0, h] yields 

      
 =−+




h

h wwdzru
rr

0

0 0)(
1 .                                                                                    (18)

 
 

 Taking Eq. (17) into account, Eq. (18) becomes 

3
2

0 02

1 (4 ) 1
,

2
12 (1 ) 1

2

m

r h sh d
w h p H

r r drH
sh

 
 




 
 

 +   = − −      
+ −  

  

                                              (19) 

where 
h mz h

w w h
=

= = which represents the effect of squeeze velocity in the z- direction. 

Also,  

             
00
.

z
w w

=
=                     (20) 

 

The pressure distribution )(rpp = , which appears in Eqs. (16), (17), and (19), is not considered 

as a priori. Our aim is to determine pressure distribution )(rpp =  as a key to the solution of 

the problem. To find pressure distribution )(rp , it is necessary to examine the flow process in 

the porous layer and to employ conditions of continuity at the interface of porous layer and film 

region. 

 

2.2  Porous medium 

In the porous layer, the velocity components u and w  are related to the pressure P by Darcy’s 

law. The components of radial and axial velocity of the fluid in the porous region are given as 

[23] 

       

2
2

0

1

2 2

r u
u P H H

r z z

  
 



 −      
= − +    

      

 and                                                    (21)

 

     

2
2

0 ,

1

2 2

z u
w P H rH

z r r z

  
 



 −      
= − −    

      

                                                      (22) 

where ,r z  represents the radial and axial permeability of the fluid in the porous region. Also, 

P  indicates fluid pressure of porous region. 

 

In the porous layer, continuity equation can be expressed as follows [23] 

   
,0)(

1
=




+





z

w
ur

rr
                    (23) 

substituting Eqs. (21) and (22) in Eq. (23), and integrating over the thickness of the porous layer

0H that is, over the interval ( )0 , 0H− yields 
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( )
0

02
2 20

0 0

0

1 1 1
.

2 2 2

r
z r z

z z H

H u
P H r p H rH

z r r r r r z

  
      

= =−

           
− − = − + −                

                                                                                                                                                        

(24) 

2.3 Continuity conditions 

Based on the Morgan-Cameron [4, 18] approximations continuity of pressure 

  
,

2

1

2

1 22








−




=








−




Hp

r
HP

r
oo                                                                                 (25) 

when employing to Eq. (24) takes the form 

( )
0

02
2 20

0 0

0

1 1 1

2 2 2

r
r z

z zz z H

H u
p H r p H rH

z r r r r r z

  
     

 
= =−

           
− = − − − −                

 
            (26)    

 

Using Eqs. (22), (25), and (26), we have  

( )

( )
.

2 2 2
0 20

0 02 2
2 2

1 1

2
2 1 4 1 1

2 2

r zr z
HHH Hsh

w r p H
r r rH H

sh

     
 

    
 

 

  
  

−     = + − −           − + −           

 

            (27) 

 

The normal (axial) component of the fluid velocity at the film-porous interface at the lower disc 

is assumed to be continuous, that is [11],   

 00 ww =                        (28) 

Produces the Reynolds' type equation as follows 

23 2 2
20

0 02 2

6 ( )(4 ) 31 1
12 12 ,

2
(1 ) 1 1

2 2

r zz
r m

H Hh sh sh H
H r p H h

r r rH H
sh

n n

     
   

   
 

  
  

−+ −     + + − =           + − −           

                       (29) 

for the considered phenomenon. 

 

Introduce the following non-dimensional variables as  

 

*, ,m
m

hr
R h

a a
= =  * * *

2 3
, ,r

m r

m m

aah
h h

h h




 
= = 
 

3
*

2
,m

m

p h
p

a h
= − ,

6
2

*

m

z

h


 =






2

2
2 ak
= ,

* 0 ,
H

H
a

= ,
3

*

m

z
z

h

a
 =  

*,r r H =
*

ms sh= ,   
3

* 0 m

m

K h

h

 



= − , 

*

z z H = .            (30) 

 

Eq. (29) can be expressed non-dimensionally as follows 

* * 21
(1 ) 12 ,

2

d d
GR p R R R

dR dR


  
− − = −  

  

                                                                          (31) 

where 
2*3 * * 2 * * *2

* * 2 * * 2 2

12 ( ) 1(4 ) 1
12 .

(1 ) (1 1 ) (1 ) (1 1 ) (1 1 )

r z
r

R Rh s h s h R R
G

s h R R s h R R R R

   


  

− −+ −
= + − +

+ − − + − − − −  
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The non-dimensional thickness of the film is calculated as follows: 

.
2

1
*

2
*

mh

R
h +=

                     (32) 

Further, non-dimensional form of the magnetic field H defined in Eq. (3) is  

2 2 2 (1 )H Ka R R= − .                                                                                                            (33) 

 

3. Solutions 

Applying pressure boundary conditions [4] 

0p = at  1R =  

 

(Since, the atmospheric pressure is negligible compared to the film pressure) 

and 0
p

R


=


at   0R =                              

(34)
 

to Eq. (31), the non-dimensional film pressure p
 can be derived as follows
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And the non-dimensional load carrying capacity *W  can be derived as follows [4] 
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*

4

0

3
402

m

m

Wh R
W dR

Ga h





−
= = + 

.

                    (36) 

 

Again, introducing non-dimensional quantities for calculating response time t as 
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Using  Eq. (37), the non-dimensional response time t*
 to reach a film thickness starting with an 

initial film thickness h2  is given by
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4. Discussion of Results 

This study analyzes squeeze film characteristics between an upper sphere and a flat porous plate 

using ferrofluid as a lubricant in the presence of an oblique and variable magnetic field. Here, 

ferrofluid lubricant flowing as per the Jenkins model simplified by Maugin [9] and used by Ram 

and Verma [8]. The modified Reynolds-Darcy equation is derived. In this paper, the effects of 

non-dimensional radial permeability, axial permeability, and the thickness of porous matrix are 

studied on the non-dimensional film pressure and response time. Eqs. (35), (36) and (38) show 

non-dimensional pressure distribution p , load carrying capacity *W and response time *t . A 

numerical evaluation of these parameters could be made using Simpson's one-third rule by 

dividing the interval into subintervals to see how various parameters affect. 

 

The following values are taken into account in all computations. 
2 7 2

0 0

-1 9 2 4 2

25.0 , 0.012(Nsm ), 0.25, 0.05, 0.001, 4 10 (NA ),

0.04(ms ), 10 /1.48( / ), 0.01( ) , 0.0001( ), 0.5

r

m

W N H

h K A m a m r m

    



− − −= = = = = = 

= − = = = =

 

)(00008.0 mhm = (Fixed for Figs. 2, 3, 4, 5, 6, 9, 10, and 11), )(00001.0 mhm = (For Fig. 8) 

)(10 216 mz

−=  (Fixed for Figs. 6, 7, 8, 9, and 12), )(10 216 mr

−= (For Fig. 8), 11 210 ( )r m −=

(Fixed for Figs. 3, 4, 5, 7, 9, 10, and 12), 
0 0.001H =  (Fixed for Figs. 2, 4, 5, 6, 8, 10, and 11), 

0 0.00001H = (For Fig. 9).
0 0.0000001H = (For Fig. 7). 

 

In Chan and Horn [20] analyzed the Reynolds lubrication equation for a sphere moving normal 

towards a flat surface at a separation
0h . As a result of their study, they also found that the 

equation  

     
( )31

( ) ( ) 12n m

d d
r h r p r h

r d r d r


 
= 

 

,            (40) 

holds for spherical surfaces for the pressure distribution ( )p r . Here at radius r , ( )nh r  is the 

surface separation. ( )nh r  can be expressed mathematically as  ,
a

r
hh mn

2

2

+=  

where Rr  , 
mh is the nominal smooth part of the surface and  r   is the radial coordinate. 

 

Matthewson [21] used Eq. (40) to derive an analytical equation for the squeeze flow of 

Newtonian fluid between a smooth rigid sphere and a smooth rigid flat plate to describe liquid 

flow in a liquid bridge. The squeeze film between a sphere and a flat plate was theoretically 

studied by Lin et al. [22]. As a result, they have derived the Reynolds equation for calculating 

pressure distributions in the form 

 

.
3 2 31

12 24 tanh 12
2

h dp
h l h l r h

r r l dr


    
− + =   

    

             (41) 

where l  is the characteristics length of the additives responsible for the couple-stress effect and 

h is given by Eq. (1). When a Newtonian fluid is used, Eq. (41) becomes Eq. (40). 
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By using the Neuringer-Rosensweig (N-R) model, Shah and Kataria [4] studied ferrofluid 

lubricated squeeze film action between an upper sphere and a lower flat porous plate. This work 

is an extension of the work presented by Chan and Horn [20] and Lin et al. [22] in the realm of 

Reynolds equations for pressure distribution and porous layer insertion with lower plates. They 

also considered ferrofluid as a lubricant with a variable and oblique magnetic field rather than 

conventional as well as couple-stress fluids. Present research paper extends the work of Shah 

and Kataria [4] in terms of ferrofluid flow behavior described by Jenkins model instead of 

Neuringer-Rosensweig (N-R).  In their paper, Shah and Kataria [4] ignore the term pertaining to 

the co-rotational derivative of magnetization. As a result, this gap has been filled in the present 

study. 

 

4.1 Discussion on squeeze film pressure 

Figure 2 shows the non-dimensional film pressure 
*p as a function of non-dimensional radial 

permeability parameter of the porous region *

r  for different values of axial permeability 

parameter *

z  
keeping non-dimensional minimum film height 008.0* =mh .It is seen that *p  

almost remains same when 6 * 31.95 10 1.95 10r
− −    . However, for 3* 1095.1 −r , *p  

decreases. It is observed, in general, that *p increases with the increasing values of
*

z . 

 

The variation in non-dimensional film pressure *p  as a function of non-dimensional thickness of 

porous matrix *H  for different values of axial permeability parameter *

z  keeping non-

dimensional minimum film height 008.0* =mh  is shown in figure 3. It is shown that when 

*0 0.01,H 
*p  attains almost same value. For ,01.0* H *p  starts decreasing. As a result, 

the insertion of porous layer reduces load carrying capacity and ultimately pressure which 

supports the conclusion of [1, 16, 18] Also, it is observed that *p increases with the increasing 

values of *

z .  

 

Figure 4 shows the non-dimensional film pressure *p   as a function of non-dimensional axial 

permeability parameter of the porous region *

z   at non-dimensional minimum film height

008.0* =mh . It is observed that *p  almost remains same when 6 * 31.95 10 1.95 10z
− −     . 

However, for 3* 1095.1 −z , *p  increases. From figures 2, 3 and 4, 
*p attains maximum value 

when 3*6 1095.11095.1 −−  r , *0 0.01,H  and 3* 1095.1 −z . 

 

4.2 Discussion on load carrying capacity 

Figure 5 shows the non-dimensional load carrying capacity *W  as a function of non-dimensional 

axial permeability parameter of the porous region *

z  at fixed parametric value 008.0* =mh . It is 

observed from the figure that initially for ,1095.11095.1 3*6 −−  z there is no variation in 

*W but there after *W  increases with the increase of *

z . 

 

Figure 6 shows the variation in non-dimensional load carrying capacity *W  as a function of the 

non-dimensional radial permeability parameter of the porous region *

r   at non-dimensional 
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minimum film thickness 008.0* =mh .It is observed that the variation in *W  remains almost same 

when 3*6 1095.11095.1 −−  r . But 3* 1095.1 −r , *W  decreases.  

 

In Figure 7, the non-dimensional load carrying capacity *W  is plotted against the non-

dimensional minimum film thickness *

mh  with varying non-dimensional thickness of porous 

matrix *H at 6* 1095.1 −=z . It observed that with increasing *

mh , *W  increases. For 

* 0.00001H = , a higher load carrying capacity *W  can be achieved. Also, *W  reaches nearly the 

same value when 009.0005.0 *  mh and *0.00001 0.01.H  After 0001.0* =H , *W  

starts decreasing for ,004.0001.0 *  mh whereas before that it is constant. Shah et al. [4] 

reported the same behavior. 

 

Figure 8 shows the non-dimensional load carrying capacity *W  as a function of non-dimensional 

material constant 2  for various values of */1 s at fixed parametric value 6* 1095.1 −=r and 

001.0* =mh . It is observed that *W  decreases when material constant 2  increases. The effect of 

material constant parameter modifies the velocity of the ferrofluid which leads to decreased 

pressure resulting in reduced load carrying capacity. The observation of Shah et al. [18] in 

agreement with these findings. Also, *W increases when */1 s  decreases. It may be that slip 

reduces the resistance encountered by fluid flowing through the gap, thus lowering its load-

carrying capacity. This is in agreement with the theoretical findings of Sparrow et al. [1], as well 

as Shah et al. [18]. 

 

Figure 9 shows the non-dimensional load carrying capacity *W  as a function of non-dimensional 

magnetization parameter *  (where K varies) considering 001.0* =H . It is observed that *W  

increases moderately with the increasing values of *  up to  21053.4 −  , but beyond that it 

increases. It may be caused by higher magnetic fields causing stronger ferrofluid spikes to form. 

The magnetization induces an increase in the viscosity of the lubricant which leads to increased 

pressure and therefore to the increased load carrying capacity.  

 

4.3 Discussion on squeeze film time 

Figure 10 presents the non-dimensional response time *t  as a function of non-dimensional 

axial permeability parameter of the porous region z  at non-dimensional minimum film 

thickness 008.0* =mh . It is seen that for 26 1095.11095.1 −−  z there is no variation in 
*t . 

Also, for 21.95 10 ,z
− 

*t increases. 

 

Figure 11 shows the non-dimensional response time 
*t  as a function of non-dimensional radial 

permeability parameter of the porous region 
r  for different values of axial permeability 

parameter 
z .It is observed that for ,1095.11095.1 36 −−  r

*t remains constant. However, 

for 31.95 10r
−  ,

*t  decreases. It is observed, in general, that 
*t  increases with the increasing 

values of 
z . 
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Figure 12 presents the non-dimensional response time *t  as a function of non-dimensional 

thickness of porous matrix *H  for different values of non-dimensional minimum film thickness

*

mh . It is observed that *t  decreases as *

mh  increases. When 009.0005.0 *  mh  and 

,01.000001.0 *  H
*t attains almost the same value. For *0.001 0.004 ,mh 

*t starts 

decreasing after 0001.0* =H  whereas before that it takes constant value. 

 

The present analysis reduces to the case of Shah et al. [4] by setting .02 =  The case will further 

deduce to Shah et al.[15], when there is no porous matrix attached to lower plate and surface 

roughness effect and rotation effect at both (upper and lower) surfaces in addition. The present 

analysis reduces to the no slip case by setting .0
1

*
→

s

The present case reduces to the case of 

conventional lubricant when .0* =  

    

5. Conclusion 

By using Jenkins model, flow was described for a ferrofluid-lubricated squeeze film bearing 

composed of a sphere on top and a flat base on the bottom. Here, a porous facing is attached 

with a lower plate. The modified Reynolds equation, governing the squeeze film pressure, is 

derived by considering the effects of squeeze velocity and slip velocity. The validity of the 

Darcy’s law is assumed for the porous matrix. Due to its significant impact on bearing 

characteristics, the co-rotational derivative of magnetization has also been taken into account 

which Shah and Kataria ignored in[4].The expression for non-dimensional load carrying capacity 
*W is obtained from the pressure equation. The effects of non-dimensional radial permeability 

parameter, axial permeability parameter, and thickness of porous matrix are studied on p , 

* *andW t whereas effects of non-dimensional magnetization parameter and slip parameter are 

studied on *W .We also investigate the effect of minimum film thickness on *W  and *t . The 

non-dimensional film pressure, load carrying capacity, and response time decreased as the 

radial permeability parameter increased, but they increased as the axial permeability parameter 

increased. The non-dimensional response time decreases and non-dimensional load carrying 

capacity increases with increasing minimum film thickness values. Furthermore, the material 

constant of Jenkins model also caused the non-dimensional load carrying capacity to decrease. 

In addition, Jenkins model may also be adopted when slip is minimum. 

 

The results of the present study led to the following conclusions: 

 

Non-dimensional film pressure *p remains maximum and constant, when 

(i) 6 * 31.95 10 1.95 10r
− −    . 

(ii) when *0 0.01.H   And *p increases with the increasing values of 
*

z . 

 

Non-dimensional load carrying capacity *W  

(i) decreases as 2  moves from 0.02 to 1.6. 
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(ii) decreases as 
*

1

s

increases. And increases with the increasing values of non dimensional 

magnetization parameter *  and the increase rate is more with the generation of stronger 

spikes of the ferrofluid due to higher magnetic field. 

 

The nature of non-dimensional response time *t attains maximum for 001.0* =mh ,

00001.0* =H and remains almost constant for   

*0.005 0.009mh   , 01.000001.0 *  H .increases with the increasing values of 
z . 

 

The pressure in the porous medium creates a path for fluid to flow from the bearing into the 

environment, which is different from permeability, according to Sparrow et al. [1]. Generally 

speaking, the higher the permeability, the faster fluid flows through the porous material. As a 

result, the porous material reduces resistance to flow in the r-direction, which consequently 

reduces load-carrying capacity. A similar tendency to decrease load-carrying capacity with the 

introduction of porous matrix and high permeability is also observed by Prakash and Tiwari [16], 

as well as by Wu [17]. 

 

In our case, porosity reduces loss of *W almost to zero. It is due to the use of ferrofluid as a 

lubricant, it is controlled by an oblique, variable magnetic field for smaller values of *H and 
*

r . 

 
Fig.1   Squeeze film geometry between a sphere and a flat porous plate 

 

36 1095.11095.1 −−  r
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Fig. 2 
*p  versus 

*

r  for different values of 
*

z   
  Fig. 3 

*p versus 
*H  for different values of

*

z  

 

  
   Fig. 4 *p  

versus *

z  at 008.0* =mh   Fig. 5 *W versus *

z  at 008.0* =mh   

 
Fig. 6 

*W versus region *

r   at 008.0* =mh        Fig. 7 
*W versus *

mh  for different values of 
*H  
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Fig. 8 *W versus 2  for various values of */1 s           Fig. 9 *W versus 
*  for 001.0* =H  

 

Fig. 10  *t versus z  at 008.0* =mh                Fig. 11  *t versus r  for different values z  

 

Fig. 12 *t  versus 
*H  for different values of *

mh . 
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Integrating Eq. (A1) twice with respect to z, one obtains 
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where  A and B being constant 

of integration. 

Using the first condition of Eq. (14) and Eq. (A2), yields 
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Using the second condition of Eq. (14), one obtains from Eq. (A2) 
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Substituting the above values of A and B in Eq. (A2), yields Eq. (16) of the present research paper. 
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employing to the Eq. (4) takes the form 
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Put HM =   in Eq. (B2) 

1. Last term of Eq. (B2) becomes  
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which modifies the velocity of the fluid. At this point one observes that Neuringer – 

Rosensweig model modifies the pressure   while Jenkins model modifies both the pressure 

and velocity of the fluid. 
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2. Second last term of Eq. (B2) becomes 

)HH.)HM. = (( 00         (B4) 

Using vector identity for  )HH.( and assuming that the fluid is electrically non-conducting 

and that the displacement current is negligible so that 0,H =  Eq. (B4) becomes 
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Using Eq.s (B3) and (B5), Eq. (B2) yields 
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(B6) 

Assuming that the flow is quasi steady, fully developed, axially symmetric and 

incompressible, the momentum equation for a fluid film reduces to 
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Solving 
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under boundary conditions 0=v when 0 andz z h= =  

We get, velocity component 0=v  

Put 0=v  in Eq. (B7), one obtains 
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which represent Eq. (13) of the present study. 

 

Appendix C 

Calculation of maximum magnetic field strength and K 

From Eq. (3), ,
)(2

2

a

raKr
H

−
= which is maximum at 3/2ar =  giving 

KH Max

42 10148.0 −=  for a=0.01, 

 for  ,
48.1

109

=K
2(10 ) or ( ) 2.H O O H   

where O indicates the order. 

 

 

 


