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Abstract:

To investigate the effects of various parameters on ferrofluid lubricated squeeze film bearing
with an upper spherical surface and a lower flat porous plate, a mathematical model has been
developed. This study examines the effect of slip velocity at the film-porous interface as
suggested by Sparrow et al. [1] and modified by Shah et al. [4]. Here, the Jenkins model was used
to describe ferrofluid flow behavior. In ferrohydrodynamics, the continuity equation and the
equations of the ferrohydrodynamics theory were used to derive a modified Reynolds's type
equation governing squeeze film pressure. From the analytical development, expressions for
non-dimensional film pressure, load-carrying capacity, and response time using a modified
Reynolds-type equation were derived. It was investigated how permeability, minimum film
thickness, slip velocity, material constant, and magnetization parameter affect the present
mechanism. The results of an investigation indicate that non-dimensional film pressure, load-
carrying capacity, and response time decreased with increasing values of the radial permeability
parameter, while they increased with increasing values of the axial permeability parameter. In
addition, non-dimensional load-carrying capacity increased and response time decreased as
minimum film thickness increased. Also, in Jenkins model, non-dimensional load carrying
capacity decreased with increasing slip parameter or material parameter values.
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Nomenclature

a Radius of the sphere (m)

h Film thickness defined in Eq. (1) (m)

hy Initial film thickness (m)

h; Non-dimensional initial film thickness as in Eq. (37)
A Minimum film thickness (m)

hm dh, /dt, Squeeze velocity (m )
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h* Non-dimensional minimum film thickness defined in Eq. (30) (m)
H Strength of variable magnetic field (Am™

H Magnetic field vector

H, Thickness of the porous layer (m)

H Non-dimensional thickness of the porous layer defined in Eq. (30).
K Defined in Eq. (3) (A’m™)

M Magnetization vector

M* Co-rotational derivative of M

M, Saturation magnetization

M Magnitude of magnetization vector

p Film pressure (N m)

p” Non-dimensional film pressure defined in Eq. (30)
q Fluid velocity vector, ms™

r Radial co-ordinate (m)

R r7/a, non-dimensional radial co-ordinate defined in Eq. (30)
s Slip parameter defined in Eq. (14) (m™).

s” Non-dimensional slip parameter for p* and w “defined in Eq. (30)
S, Non-dimensional slip parameter for t~ defined in Eq. (37)

t Time (s)

t” Non-dimensional response time as in Eq. (37)
w Load carrying capacity defined in Eq. (36) (N)
w* Non-dimensional load carrying capacity defined in Eq. (36)
z Axial co-ordinate (m)

Greek symbols

77 Fluid viscosity (N s m2)

n, Porosity of the porous region in the radial direction

Yol Fluid density (N sm™)

u,  Permeability of free space (N A™)

7 Initial susceptibility of fluid

Magnetic susceptibility

o Non-dimensional magnetization parameter for p“and w*defined in Eq. (30)
7 Non-dimensional magnetization parameter for t~ defined in Eq. (37)

c Standard deviation

& Permeability of the fluid in the radial direction of the porous region (m?)

@, Permeability of the fluid in the axial direction of the porous region (m?)

@, Non-dimensional radial permeability parameter of the porous region for p“and
W " is defined by Eq. (30)

Non-dimensional axial permeability parameter of the porous region for p“and
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W " defined in Eq. (30)

P, Non-dimensional radial permeability parameter of the porous region fort™
defined in Eq. (37)
b, Non-dimensional axial permeability parameter of the porous region fort”

defined in Eq. (37)
v, In Eqg. (30), the non-dimensional quantity is defined
v, In Eqg. (30), the non-dimensional quantity is defined
v, Non-dimensional quantity defined in Eq. (37)
v, Non-dimensional quantity defined in Eq. (37)

al Material constant of Jenkins model
(m’A"s™)
2 Non-dimensional material constant defined in Eq. (30)
4 another material constant of Jenkins model
y"  asdefinedin Eq. (30)

7, as defined in Eq. (37)

1. Introduction

A ferrofluid can be used as a lubricant to eliminate the shortcomings of previous porous
bearings studies. Ferrofluid [2] is a colloidal dispersion containing fine ferromagnetic particles,
like ferric oxide, cobalt, and magnetite in a non-conducting liquid carrier. A suitable surfactant is
added to the carrier liquid to form a coating layer that prevents the particles from flocculating. In
the presence of an external magnetic field, magnetic fluid experiences magnetic body forces. In
the lack of a magnetic field, the magnetic moments of the particle are randomly oriented and
the fluids behave like normal fluids. In a ferrofluid, approximately 85% carrier liquid, 10%
surfactant, and 5% magnetic solids are present. When used as a lubricant, ferrofluid has many
advantages. There is no rubbing between solid materials, no external lubrication is required, and
no side leakage occurs with ferrofluids. These properties make ferrofluids useful for sealing,
sensors, filtering devices, elastic dampers, lubrication etc.

Using ferrofluid as a lubricant, Shah and Bhat [3] investigated the lubrication performance of a
squeeze film between circular plates with a porous matrix attached to the upper plate using
ferrofluid as a lubricant. Consideration of the effect of rotation is also made. Results show that
an increase in magnetization parameters increase bearing characteristics such as pressure, load
carry capacity, and response time. They also showed that an increase in load-carrying capacity
and pressure are entirely dependent on magnetization, while increases in response time depend
on fluid inertia, speed of rotation, and magnetization. Under the presence of a ferrofluid, Shah
and Kataria [4] studied squeeze film-bearing with a spherical upper surface and a flat porous
plate. Their theoretical study investigated the impact of squeeze film height, permeability, and
matrix width on squeeze film performance. In their study, the researchers concluded that non-
dimensional load-carrying capacity loss due to porosity is almost zero when ferrofluid is used as
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a lubricant at smaller values of thickness and radial permeability.The theoretical work on circular
discs porous squeeze film bearings of various shapes like exponential, secant, and parallel was
done by Shah and Patel [5].Using the Reynolds equation, different circular porous squeeze film-
bearing design systems (e.g., exponential, secant, and parallel (flat)) were studied and compared
for load-carrying capacity. According to the findings of the investigation, uniform magnetic
fields do not affect the performance of the bearing systems. All the above investigators [3-5]
have used the N-R model [6] for ferrofluid lubrication under a variable magnetic field.

Neuringer-Rosensweig (N-R) [6] developed a fairly simple model to examine the effect of
magnetic body force, assuming that the magnetization vector M is parallel to the applied
magnetic field vector H. Jenkins [7] model could be regarded as an extension of the N-R model.
The N-R model modifies the pressure while the Jenkins model modifies both the pressure and
velocity of the magnetic fluid through an additional term pertaining to the co-rotational
derivative of magnetization which is missing in the N-R model. Ram and Verma [8] analyzed the
performance of porous inclined slider bearing using Jenkins' ferrofluid flow model [7], which is
based on Maugin's [9] simplification of m — z K . Load carrying capacity was found to increase
with increasing fluid magnetization and material constant. Shah and Bhat [10] examined the
effect of ferrofluid on a slider bearing with a circular convex pad. In their study, researchers
indicate that a stronger magnetic field can increase the bearing's pressure and load capacity
considerably. However, material parameters do not significantly affect them. Shah and Patel [11]
studied the effects of slip and squeeze velocity on a porous pivoted slider bearing lubricated
with ferrofluid. In the study, it was found that dimensionless load-carrying capacity increased as
squeeze velocity increased and sliding velocity decreased. An extensive review of ferrofluid
lubrication with several experimental studies was presented by Huang and Wang [12].Using the
Jenkins model, Laghrabli et a/ [13] investigated hydrodynamic ferrofluid lubrication for finite
journal bearings. The magnetic fluid was generated by displaced finite wire. A comparison was
also made between the results and the N-R model. Patel and Kataria [14] presented the Jenkins'
model for ferrofluid flow between rotating upper spherical surfaces and circumferentially rough
lower plate, and according to the results, the Jenkins model is more efficient than the NR model
at carrying non-dimensional loads. Currently, there is no information on how Jenkins' model
impacts the mechanism [4]. Therefore, further study is of interest to get insight into the
phenomenon.

With this motivation, the present study derived a modified Reynolds equation for a ferrofluid
lubricated squeeze film bearing consisting of a spherical upper surface and a porous lower
surface considering the effects of porosity, squeeze velocity, and slip velocity at the interface of
the porous layer and film region using the Jenkins ferrofluid flow model. The validity of Darcy's
law is assumed while deriving the modified Reynolds equation. Here, water-based ferrofluid is
used. A modified Reynolds's type equation, which is a differential equation in pressure under
certain boundary conditions, can be deduced from Navier-Stokes equations along with a
continuity equation. Also, equation of continuity is considered in the film as well as the porous
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region. From the analytical development, expressions for non-dimensional film pressure and
load-carrying capacity of the squeeze film are derived as a function of the non-dimensional
parameters such as slip, material constant, magnetization, radial, and axial permeabilities. In this
study, the non-dimensional film pressure, load-carrying capacity, and response time were
derived and calculated numerically. Graphs depict the results. Table 1 defines the symbols used
in the paper. Effects of various non-dimensional parameters like radial permeability, axial
permeability, and thickness of porous layer are studied on p*, W*, and #. Moreover, the effect of
minimum film thickness is studied on W*and ¢*. Effect of slip on W is illustrated by the graphs.

2. Formulation of the Mathematical Model
As shown in Figure 1, the physical configuration of the problem under consideration is arranged
as a rigid sphere with radius a approaching a flat porous plate formed by attaching a layer of
porous material of thickness H, to an impermeable flat surface. Self-lubrication is one of the

advantages of porous layers.

A ferrofluid lubricant fills the region between the sphere and flat porous plate called the fluid
film thickness. Film thickness /4[4, 14, 15] is given by the expression

r2
h=h, +-—; r<<a, (M
2a

where A, is the minimum film thickness and ris the radial coordinate.

The upper surface (sphere) moves normally towards the lower flat porous plate with a uniform
velocity called squeeze velocity
_dh, 2

moodt
where tstands for time in seconds.
Strength H of a variable magnetic field [4, 14, 15] is given by
KrZ(a—r)
—Qa
K being a quantity chosen to fit the dimensions of both sides of Eq. (3).

H*= 3)

2.1 Squeeze film

In 1972, Jenkins developed a simple model to express magnetic fluid flow [7]. Jenkins' theory
states that the Neuringer-Rosensweig model was not merely generalized, but also modified in
terms of both the pressure and velocity of the magnetic fluid.

According to the Jenkins model, flow equations using the cylindrical frame of reference can be
presented as follows [11, 14, 19]:

p[gt_q+(q-V)q}:—vp+nvzq+#o('v"V)H+pa2vx[%XM*j’ ?
veaso (5)
VxH=0, ©
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Ve(H+47M)=0, @
(e S ®)

M*=%+%(VXQ)><M- ©)

In the present analysis, the direction of the magnetization of a fluid is always in the direction of
the local magnetic field [11, 14, 18], so Eq. (9) is replaced by

M=zuzH, (10)
and M*=%(V><q)><M, a1
Also, q=(r, ro, z)=(u, rv,w), (12)

where (r, 8, z) are cylindrical polar co-ordinates and dot (.) represents derivative with respect to
tAlso, a radial, tangential, and axial velocity component of q is given by ¢, v, and w.

For the derivation, laminar flow and fluid incompressibility are assumed, porous matrix is
homogeneous and isotropic, all inertia terms are neglected because viscous forces are greater
than inertia forces. Flow within the film and porous region are axisymmetric, derivatives of fluid
velocities across the film predominate, and velocities are continuous at the interface between
the porous layer and film regions.

Based on the simplified assumptions and using Egs. (4) to (9), a two-dimensional equation
governing the distribution of pressure pin the r~direction is given by [11, 19]. (Appendix B)

2[ @j_;g[ 1 _sz (13)
oz\""ez ) | paimH | ar Pttt )
2n

where His the magnetic field strength. By solving Eq. (13) under the boundary conditions [1, 4,
23]

u=19 when z=0 ;l = Pe 11: (slip boundary condition) (14)
s oz S 5
And u =0,when z=h, (15)

we obtain a velocity profile along the film region as follows (Appendix A)

i _
p_Eﬂo,qu

u= — —_—
poa”uH | or

2n
where s: slip parameter, ¢ : permeability of the porous region in the radial direction, 7, :

(h+ z + shz)(z — h) o ( ] (16)

2n (A+sh)y@d—

porosity of the porous region in the radial direction.

Eq. (16) is integrated over the film region 4, i.e., 0 to A, with respect to z we obtain
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h 3 : (17)
[T S CES BN AP el
° 1277 (1+ sh)[l—pazi’qu r

n

Using continuity equation in cylindrical polar coordinates and integrating it with respect to z
over the film thickness [0, /] yields

10 %

Fgg(ru)dz+wh—wc,=0- (18)

Taking Eq. (17) into account, Eq. (18) becomes

.10 rh®(4+sh d 1 (19)
WO:hm_Fg ( )2—H E[p_aﬂoszj ’
1251+ sh)[l_mﬂj
2n
where w, =w| = h,, which represents the effect of squeeze velocity in the z- direction.
Also,
W],y = W. (20)

The pressure distribution p = p(r), which appears in Egs. (16), (17), and (19), is not considered
as a priori. Our aim is to determine pressure distribution p = p(r) as a key to the solution of
the problem. To find pressure distribution p (r), it is necessary to examine the flow process in
the porous layer and to employ conditions of continuity at the interface of porous layer and film
region.

2.2 Porous medium

In the porous layer, the velocity components U and W are related to the pressure P by Darcy's
law. The components of radial and axial velocity of the fluid in the porous region are given as
[23]

Uzﬁ[E(P—EyOﬁH2)+ﬂQ[H a_uj:| and (21
n | or 2 2 oz oz
_ —¢,| 0 1 _ . po’i 8[ éu) (22)
=% Ll p_ZyaH? |- LA
W= [62( 2 Mokt ] or ol az )|

where ¢, ¢, represents the radial and axial permeability of the fluid in the porous region. Also,

p indicates fluid pressure of porous region.

In the porous layer, continuity equation can be expressed as follows [23]
12 rmy+ X o, (23)
r or oz
substituting Egs. (21) and (22) in Eq. (23), and integrating over the thickness of the porous layer

H,that is, over the interval (-H,, 0 )yields
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0
d 1 gH, 8] & 1 paii ( auj
2P pymH? || =% — = M
/. oz ( otk j o r or [ or [ P=3 okt H — 4 ) ror oz )|,

(24)
2.3 Continuity conditions
Based on the Morgan-Cameron [4, 18] approximations continuity of pressure

) 1 _.,) @0 1 (25)
P pmH? == p-—Z=pmH? |,
8r( 5 Mot j ar(p 5 Mot j

when employing to Eq. (24) takes the form

(o]
o 1 .. #H, 0 6[ 1 _ 2) pa 7] [ 8uj
9 p-L, aH S AR I P T8
az[p 2 Mok jzo rg, or| or\ P 24 (¢ ¢)rar oz

z=—H,
(26)
Using Egs. (22), (25), and (26), we have
V_Vozlaa pH,  po a4, ¢)I|-|_|H pa’ g, Hsh? — rai(p—%ﬂoﬁsz
r or r .
7 21° [1 7”“2: ] an? (1+ sh)[l 7'00‘2;‘ ]
(27)

The normal (axial) component of the fluid velocity at the film-porous interface at the lower disc
is assumed to be continuous, thatis [11],
w, =W, (28)

Produces the Reynolds' type equation as follows

3 2 — 2 2 —
lai 12¢rH0+77h (4+sh)—3pa éleSh H 6pa bH, (4, —¢,)H raﬁ(p_%ﬂoﬁsz _124h
rer 77(1+sh)(1—'0a ”Hj 77[1 pa T ”HJ r
2n 2n
(29)
for the considered phenomenon.
Introduce the following non-dimensional variables as
« . 3 6
R:L, hm:h_m’ h — ah _ga p=— EJhm‘ ,7/_ (f,ﬂ_pa,u\/—a
a a n M & h? a‘nh, h, 2n
* H * a " * * —_ * *
H Z?O’ ¢z:f]z3 1 l//r:¢rH’S :Shm' ﬂ*Z——Kﬂol{Ihmll//z:¢zH . (30)
m nh,
Eq. (29) can be expressed non-dimensionally as follows
i[GR d {p _1 *R2(1—R)H:—12R, 31
drR dR
where
*3 > 2% Fh*2
G=12y, + h'(a+sh) ___ Y ShPRVI-R  128%(y, —y,)RVI-R

(1+s"h)(1-B°RV1I-R) (1+s*h*)(1—,82R\/1—R) (1- B*RV1-R)
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The non-dimensional thickness of the film is calculated as follows:

h" =1+ R*
2h; 32)
Further, non-dimensional form of the magnetic field H#defined in Eq. (3) is
H? = Ka’R*(1—R). (33)
3. Solutions
Applying pressure boundary conditions [4]
p*=0at R=1

(Since, the atmospheric pressure is negligible compared to the film pressure)
and a_p*:oat R=0

oR
(34)
to Eq. (31), the non-dimensional film pressure p* can be derived as follows
1
p"==4R°A—R)+ | — dR
2 f (35)
where
G 12 + h®(4+sh") N 12,8 (v, —w,)RVI-R
v @A+sh")(1-L*RV1I-R) (@A+sh") (- B°RV1- R) (1- B’RV1-R)
And the non-dimensional load carrying capacityw ™ can be derived as follows [4]
W" = ——wr}i_ _ M, 3j—dR
2zna“h,, 40 (36)

Again, introducing non-dimensional quantities for calculating response time tas

. h . Kuma® 7_®%& - _¢$a . . L L .
hz__m :ul:M’¢r h3’¢Z:|;3’l//r:¢rH ) Wz:¢zH ' T :hZ—ZV\it.SlZShZ’
w 2 na

. 6
yi- h‘/iz. (37)
2

Using Eq. (37), the non-dimensional response time £ to reach a film thickness starting with an

initial film thickness /. is given by

3R?
. j drR
t*=—j 0 G — dh} (38)
h 1 H
2zt 40
where
6 -8 1y, N s A yisihy RVI-R  12°RVI-R(y; ~y1)
h,® " (@+s/hh’)A-B*RVI-R) (1+s1*h* “)1- p2R1- ) 1-B*RVI-R)
(39)
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4. Discussion of Results

This study analyzes squeeze film characteristics between an upper sphere and a flat porous plate
using ferrofluid as a lubricant in the presence of an oblique and variable magnetic field. Here,
ferrofluid lubricant flowing as per the Jenkins model simplified by Maugin [9] and used by Ram
and Verma [8]. The modified Reynolds-Darcy equation is derived. In this paper, the effects of
non-dimensional radial permeability, axial permeability, and the thickness of porous matrix are
studied on the non-dimensional film pressure and response time. Egs. (35), (36) and (38) show
non-dimensional pressure distribution p*, load carrying capacity w*and response timet” . A
numerical evaluation of these parameters could be made using Simpson's one-third rule by
dividing the interval into subintervals to see how various parameters affect.

The following values are taken into account in all computations.

W =25.0N,7=0.012(Nsm?), 7, =0.25, 77 =0.05, H, =0.001, 1, = 47 x10" (NA2),

h, =—0.04(ms™), K =10°/1.48(A?/m*), a=0.01(m), r =0.0001(m), B#* =0.5

h,, = 0.00008 (m) (Fixed forFigs.2,3,4,5,6,9,10,and 11), h_ = 0.00001 (m) (For Fig. 8)

¢, =107 (m?) (Fixed for Figs. 6, 7, 8, 9, and 12), ¢, =10 (m?) (For Fig. 8), 4. =107'* (m?)
(Fixed for Figs. 3, 4, 5, 7, 9, 10, and 12), H, =0.001 (Fixed for Figs. 2, 4, 5, 6, 8, 10, and 11),

H, = 0.00001(For Fig. 9). H, = 0.0000001 (For Fig. 7).

In Chan and Horn [20] analyzed the Reynolds lubrication equation for a sphere moving normal
towards a flat surface at a separation . As a result of their study, they also found that the
equation

i1d
rdr

[r he (r)%( p(r)):| —1277h (40)

holds for spherical surfaces for the pressure distribution p(r). Here at radius r, h (r) is the

2
surface separation. h (r) can be expressed mathematicallyas h =h_ +
2a

where r << R, h,, is the nominal smooth part of the surface and I is the radial coordinate.

Matthewson [21] used Eq. (40) to derive an analytical equation for the squeeze flow of
Newtonian fluid between a smooth rigid sphere and a smooth rigid flat plate to describe liquid
flow in a liquid bridge. The squeeze film between a sphere and a flat plate was theoretically
studied by Lin et al. [22]. As a result, they have derived the Reynolds equation for calculating
pressure distributions in the form

lﬁHhs —121%h + 241° tanh [ﬂj}r%} =12nh (41)

r or 2l dr

where | is the characteristics length of the additives responsible for the couple-stress effect and
his given by Eq. (1). When a Newtonian fluid is used, Eq. (41) becomes Eq. (40).
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By using the Neuringer-Rosensweig (N-R) model, Shah and Kataria [4] studied ferrofluid
lubricated squeeze film action between an upper sphere and a lower flat porous plate. This work
is an extension of the work presented by Chan and Horn [20] and Lin et a/ [22] in the realm of
Reynolds equations for pressure distribution and porous layer insertion with lower plates. They
also considered ferrofluid as a lubricant with a variable and oblique magnetic field rather than
conventional as well as couple-stress fluids. Present research paper extends the work of Shah
and Kataria [4] in terms of ferrofluid flow behavior described by Jenkins model instead of
Neuringer-Rosensweig (N-R). In their paper, Shah and Kataria [4] ignore the term pertaining to
the co-rotational derivative of magnetization. As a result, this gap has been filled in the present
study.

4.1 Discussion on squeeze film pressure

Figure 2 shows the non-dimensional film pressure p as a function of non-dimensional radial
permeability parameter of the porous region ¢~ for different values of axial permeability
parameter ¢~ keeping non-dimensional minimum film height h* —=0.008 .It is seen that p*

almost remains same when 1.95x10° < ¢ <1.95x10°3. However, for 4 >1.95x107°, p”

decreases. It is observed, in general, that p”increases with the increasing values of @, .

The variation in non-dimensional film pressure p* as a function of non-dimensional thickness of
porous matrix H~ for different values of axial permeability parameter 4* keeping non-
dimensional minimum film height h’ =0.008 is shown in figure 3. It is shown that when
0< H"<0.01, p_ attains almost same value. For 4~ = 0.01, p* starts decreasing. As a result,
the insertion of porous layer reduces load carrying capacity and ultimately pressure which
supports the conclusion of [1, 16, 18] Also, it is observed that p”increases with the increasing

values of ¢ .

Figure 4 shows the non-dimensional film pressure p* as a function of non-dimensional axial
permeability parameter of the porous region ¢~ at non-dimensional minimum film height
h, =0.008. It is observed that p” almost remains same when 1.95x10° < ¢, <1.95x107° .
However, for ¢’ >1.95x10°°, p* increases. From figures 2, 3 and 4, p’ attains maximum value
when 1.95x10°° < ¢ <1.95x107%,0 < H" <0.01,and ¢, >1.95x10 °.

4.2 Discussion on load carrying capacity

Figure 5 shows the non-dimensional load carrying capacity w* as a function of non-dimensional
axial permeability parameter of the porous region ¢, at fixed parametric value h’ = 0.008. Itis
observed from the figure that initially for 1.95x10° < ¢, <1.95x102, there is no variation in
w*but there after w* increases with the increase of 4.

Figure 6 shows the variation in non-dimensional load carrying capacity w* as a function of the

*

non-dimensional radial permeability parameter of the porous region ¢ at non-dimensional

r
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minimum film thickness h* —= 0.008 .It is observed that the variation in w* remains almost same

when 1.95x10° < ¢ <1.95x10 2. But ¢ >1.95x10*,W " decreases.

In Figure 7, the non-dimensional load carrying capacity w- is plotted against the non-
dimensional minimum film thickness n’ with varying non-dimensional thickness of porous
matrix H"at g’ —=1.95x10°. It observed that with increasingn?, w~ increases. For
H " = 0.00001, a higher load carrying capacity W” can be achieved. Also, W" reaches nearly the
same value when 0.005 < h;, <0.009 and 0.00001< H" < 0.01.After H* =0.0001, W*
starts decreasing for 0.001 < h’, < 0.004, whereas before that it is constant. Shah et al. [4]

reported the same behavior.

Figure 8 shows the non-dimensional load carrying capacity w* as a function of non-dimensional
material constant p? for various values of 1/s” at fixed parametric value ¢~ =1.95x10°and
h: — 0.001 - Itis observed that W™ decreases when material constant p? increases. The effect of
material constant parameter modifies the velocity of the ferrofluid which leads to decreased
pressure resulting in reduced load carrying capacity. The observation of Shah et a/ [18] in
agreement with these findings. Also, wincreases when 1/s” decreases. It may be that slip
reduces the resistance encountered by fluid flowing through the gap, thus lowering its load-
carrying capacity. This is in agreement with the theoretical findings of Sparrow et a/. [1], as well
as Shah et a/ [18].

Figure 9 shows the non-dimensional load carrying capacityw* as a function of non-dimensional

*

magnetization parameter ,,~ (where K'varies) consideringH” = 0.001. It is observed that w~
increases moderately with the increasing values of ,,~ up to 4.53x1072 , but beyond that it
increases. It may be caused by higher magnetic fields causing stronger ferrofluid spikes to form.
The magnetization induces an increase in the viscosity of the lubricant which leads to increased

pressure and therefore to the increased load carrying capacity.

4.3 Discussion on squeeze film time

Figure 10 presents the non-dimensional response time t~ as a function of non-dimensional
axial permeability parameter of the porous region 52 at non-dimensional minimum film
thickness * — 0.00s - It is seen that for 1.95x10°° < ¢, <1.95x10 2 there is no variation in t'.

Also, for ¢, >1.95x1072, t'increases.

Figure 11 shows the non-dimensional response time t" as a function of non-dimensional radial
permeability parameter of the porous region ¢  for different values of axial permeability
parameter ¢, .It is observed that for 1.95x10° < ¢, <1.95x102, t remains constant. However,
forgr -~ 1.95x10-2,1" decreases. It is observed, in general, that t" increases with the increasing

values of ¢, .
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Figure 12 presents the non-dimensional response time t' as a function of non-dimensional
thickness of porous matrix H™* for different values of non-dimensional minimum film thickness
hy. It is observed that t' decreases as h: increases. When 0.005<h’ <0.009 and
0.00001 < H” < 0.01, t'attains almost the same value. For 0.001< h’ < 0.004 t'starts

decreasing after H* = 0.0001 Whereas before that it takes constant value.

The present analysis reduces to the case of Shah et a/. [4] by setting a® = 0. The case will further

deduce to Shah et a/[15], when there is no porous matrix attached to lower plate and surface

roughness effect and rotation effect at both (upper and lower) surfaces in addition. The present

analysis reduces to the no slip case by setting 1 , The present case reduces to the case of
S

conventional lubricant when ;" = 0.

5. Conclusion

By using Jenkins model, flow was described for a ferrofluid-lubricated squeeze film bearing
composed of a sphere on top and a flat base on the bottom. Here, a porous facing is attached
with a lower plate. The modified Reynolds equation, governing the squeeze film pressure, is
derived by considering the effects of squeeze velocity and slip velocity. The validity of the
Darcy’'s law is assumed for the porous matrix. Due to its significant impact on bearing
characteristics, the co-rotational derivative of magnetization has also been taken into account
which Shah and Kataria ignored in[4].The expression for non-dimensional load carrying capacity
W’ is obtained from the pressure equation. The effects of non-dimensional radial permeability
parameter, axial permeability parameter, and thickness of porous matrix are studied on p*,
W™ and t"whereas effects of non-dimensional magnetization parameter and slip parameter are
studied on w*.We also investigate the effect of minimum film thickness on w* and t~. The
non-dimensional film pressure, load carrying capacity, and response time decreased as the
radial permeability parameter increased, but they increased as the axial permeability parameter
increased. The non-dimensional response time decreases and non-dimensional load carrying
capacity increases with increasing minimum film thickness values. Furthermore, the material
constant of Jenkins model also caused the non-dimensional load carrying capacity to decrease.
In addition, Jenkins model may also be adopted when slip is minimum.

The results of the present study led to the following conclusions:

Non-dimensional film pressure p*remains maximum and constant, when
() 1.95x10° < ¢ <1.95x10°.
(i) when 0< H"<0.01. And p~increases with the increasing values of b,

7z

Non-dimensional load carrying capacity w*
() decreasesas g moves from 0.02 to 1.6.
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(i) decreases as _1 increases. And increases with the increasing values of non dimensional
S

*

magnetization parameter ;" and the increase rate is more with the generation of stronger

spikes of the ferrofluid due to higher magnetic field.

The nature of non-dimensional response timet™ attains maximum for h, =0.001,
H "~ = 0.00001 and 1.95x10°° < ¢, <1.95x10 *remains almost constant for
0.005 < h;, <0.009 ,0.00001 < H " < 0.01.increases with the increasing values of &, .

The pressure in the porous medium creates a path for fluid to flow from the bearing into the
environment, which is different from permeability, according to Sparrow et al [1]. Generally
speaking, the higher the permeability, the faster fluid flows through the porous material. As a
result, the porous material reduces resistance to flow in the r-direction, which consequently
reduces load-carrying capacity. A similar tendency to decrease load-carrying capacity with the
introduction of porous matrix and high permeability is also observed by Prakash and Tiwari [16],
as well as by Wu [17].

In our case, porosity reduces loss of w*almost to zero. It is due to the use of ferrofluid as a

lubricant, it is controlled by an oblique, variable magnetic field for smaller values of H *and ¢:.

Fig.1 Squeeze film geometry between a sphere and a flat porous plate
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Fig.2 p” versus ¢, for different values of ¢.
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Appendix A
o( au 1 0 1 _
—(U—jZT—[p——ﬂoﬂHzJ- (A1)
oz\ " oz (1_ pa’uH J or 2
2n
Integrating Eqg. (A1) twice with respect to z, one obtains
ou 1 0 1
A _ Il p-ZpumH? ||lz+ A, (A2)
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where A and B being constant
of integration.

Using the first condition of Eq. (14) and Eq. (A2), yields B = 1ou
S oz

z=0

Using the second condition of Eq. (14), one obtains from Eq. (A2)

—sh? 0 1 _
A= a?H [5(‘)_5“0”'_'2}
2n (L +shy (- P4 #1 2“ )
n

Substituting the above values of Aand Bin Eq. (A2), yields Eq. (16) of the present research paper.

Appendix B
WhenM*:%(qu)xM (B1)

employing to the Eq. (4) takes the form

p[%q + (q.v)q} =-VP+nVia+u, (MV)H + pa;V X[% x{(V < a)x 'V'}j (B2)

Put M=z H inEq.(B2)
1. Last term of Eq. (B2) becomes

pa’V X[%x{(vxq)x M}j :&;ﬁvX[Ex{(qu)x H}j

2 (B3)

which modifies the velocity of the fluid. At this point one observes that Neuringer —
Rosensweig model modifies the pressure while Jenkins model modifies both the pressure
and velocity of the fluid.
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2. Second last term of Eq. (B2) becomes
Ho(M.V)H = 115 1 (H.V)H (B4)
Using vector identity for (H.V)H and assuming that the fluid is electrically non-conducting
and that the displacement current is negligible so that VxH =0, Eq. (B4) becomes

#o(MVIH = 41y 7V(H) (B5)

Using Eq.s (B3) and (B5), Eqg. (B2) yields
2 —
Yo, 8_q+ (9.V)q |=-Vp+nV?iq +£,u0ﬁH 2 +pa—’qu ﬂ>< {(qu)x H} (B6)
ot 2 2 H
Assuming that the flow is quasi steady, fully developed, axially symmetric and
incompressible, the momentum equation for a fluid film reduces to

2 2 2 7 2 ’
v __op, 0% 1 _oH _PaﬂHau,%=Oandn%=0(B7)

— _— = ___|_ J—
P T Tar e Tt 2 o’
2
Solving n 0 \2/ =0 under boundary conditions v=0 when z=0 and z=h

o7?
We get, velocity component v =0
2 2 2 — 2
Putv=0 inEq. (B7), one obtains g = —@+77 o°u +1#0ﬁ OH" pa”uH o7u
or ‘"oz 2 or 2 ozt

which represent Eq. (13) of the present study.

Appendix C

Calculation of maximum magnetic field strength and K

Kr?(a—r)
a

FromEq.(3), H?2 = _which is maximum at r =2a/3 giving
HZ. =0.148 x10*K for 4=0.01,

10° ~ 2 ~
for K=—_, H=O(0°) or O(H)~2.

1.48

where Oindicates the order.
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