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Abstract: 

In this research work, a novel second-order sliding mode control with a fuzzy logic based time-

varying sliding surface is proposed. The time-varying sliding surfaces is an effective sliding 

surface design strategy for improving the controller performance. A sliding variable with relative 

of degree 2 is first built by accounting for the model uncertainties and external disturbances in 

the mathematical model. Then, to improve the tracking performance of the system under 

control, a time-varying sliding surface based on a straightforward single input-single output 

fuzzy logic inference system is proposed. The system's reaching conditions, stability, and 

robustness are all ensured by the proposed controller. The proposed controller lends itself well 

to simple design and implementation. Theoretical analysis demonstrates the global finite-time 

stability of the resulting closed-loop system. The proposed controller is studied in comparison 

with a traditional second-order sliding mode controller with a fixed sliding surface using 

MATLAB/SIMULINK for a nonlinear system. The results show that the proposed controller 

exhibits a better dynamic performance compared to the standard second-order sliding mode 

controller with a fixed sliding surface. 
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1. Introduction 

Sliding mode control is a well-known control method that has been successfully and widely 

applied to dynamic uncertain systems. This popularity can be attributed to the sliding mode 

control's desirable properties, which include resistance to external shocks, parameter violations, 
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and uncertainty. The sliding mode control strategy also offers a clear, user-friendly algorithm. 

The two steps of the sliding mode control design are the construction of the desired sliding 

surface and the enforcement of the sliding mode. The conventional sliding mode controller uses 

either relay controllers or unit controllers. One of the fundamental problems with these control 

systems is that switching and temporal delays in system dynamics prevent the system trajectory 

from reaching the ideal sliding mode, which results in chattering, a high-frequency oscillation. 

Additionally, while the system states are in the reaching mode, the classic sliding mode 

controller with a fixed sliding surface has the limitation that the tracking error cannot be easily 

managed, making the system vulnerable to parameter changes. 

Second-order sliding mode (SOSM) control is a control technique that is based on the use of 

higher-order sliding modes to ensure robustness and tracking performance in the presence of 

uncertainties and disturbances. In SOSM control, the control law is designed to force the system 

state onto a sliding surface, which is a manifold of reduced dimensionality, such that the system 

dynamics are constrained to evolve along the surface. The performance of a second order 

sliding mode controller very much depends on the sliding surface. There is no formal and hard 

rule for the design of sliding surface. Hence, the design of optimal sliding surface is an almost 

impossible task. In addition, a second-order sliding mode controller with a fixed sliding surface 

is more susceptible to parameter changes when it is in reaching mode. This sensitivity can be 

decreased by shortening the duration of the reaching mode.  Hence, a time-varying sliding 

surface is proposed in this work. 

The concept behind the time-varying sliding surface is to rotate the sliding surface in the 

direction of improved dynamic performance. Also, SOSM control technique with time-varying 

sliding surface is a viable choice to achieve tracking of time-varying references or rejection of 

time-varying disturbances. The design of the SOSM controller with a time-varying sliding surface 

typically involves selecting a Lyapunov function that measures the distance between the system 

state and the sliding surface. The control law is then derived based on the gradient of the 

Lyapunov function, which drives the system towards the sliding surface. Overall, the SOSMC 

technique with a time-varying sliding surface can be a powerful tool for achieving robust and 

accurate control of uncertain systems. However, the design of the controller can be challenging 

and requires a good understanding of both the system dynamics and the control theory 

involved. Also, there is no strict and hard rules for rotation of the sliding surface in the direction 

of improved dynamic performance, only some approximate rules are available. 

Sliding mode control is an appropriate strategy for robust control because its decreased order 

dynamics offer desirable benefits like matching uncertainties and disturbances and sensitivity to 

parameter fluctuations.[1] Sliding mode controllers have been shown to be effective for 

stabilizing uncertain nonlinear systems that contain nonlinearities and uncertainties [2]. A 

framework for the application of robust and smooth second-order sliding mode control to a 
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class of underactuated mechanical systems for the realization of high-performance control 

applications in [3]. Particularly, external disturbances, parameter uncertainties, etc. affect 

practically all real systems inexorably, degrading the performance of many control schemes. 

Since un-actuated states are significantly more sensitive to disturbances than actuated ones and 

are therefore very challenging to stabilize, such a problem is made even worse for 

underactuated systems.[4] 

Even though sliding mode control is an effective control technique that may create a closed-

loop system that is particularly resilient to plant uncertainty and outside disturbances, it has 

chattering problems. A good method for reducing chattering is second-order sliding mode 

control. The chattering issues in the first-order SMC can be effectively reduced by the SOSM [5-

9]. One technique to lessen chattering is to use a continuous compensation term to lessen the 

effects of the uncertainty since the chattering is proportional to the switching gain's magnitude, 

which is chosen to be greater than the bounded value of the uncertainty and disturbance.[10]  

Even though the sliding surface can be achieved under SMC in a finite-time sense, the linear 

sliding variable design is only enough to cause the system to converge to the origin 

asymptotically rather than in a finite-time sense [11]. The SOSM method can also be suitable for 

the asymmetric output constraint problem [12]. SMC-based controller technique is applied to 

buck converter circuit in [13]. For relative-degree-2 nonlinear uncertain single-input-single-

output (SISO) systems, a unique second-order sliding mode control approach is suggested in 

[14]. For a broad class of uncertain nonlinear systems, the globally fixed-time control problem is 

examined in [15]. 

Fuzzy logic is a popular control technique that is widely used in various industrial applications 

due to its ability to handle uncertainties and approximations. [16-17] It is particularly useful for 

control problems that are difficult to model mathematically.  The problem of developing a fuzzy 

adaptive second-order sliding mode (SOSM) controller for a particular class of nonlinear 

systems has been addressed in [18]. To stop the chattering, the fuzzy sliding mode controller 

(FSMC) has been designed using a sliding mode control (SMC) technique combined with fuzzy 

logic in [19]. An innovative adaptive super-twisting sliding mode controller based on fuzzy logic 

is used in [20] to regulate dynamic uncertain systems. 

The disadvantage of the traditional second-order sliding mode control with a fixed sliding 

surface is that the system performance is highly dependent on the sliding surface, even though 

the second-order sliding mode control scheme for the control of uncertain systems reduces the 

chattering phenomenon of the classical first-order sliding mode controller and guarantees 

higher accuracy in the presence of system imperfections and uncertainties. Finding the ideal 

sliding surface slope value is a difficult and time-consuming task. A super-twisting sliding mode 

control of a dynamic uncertain system with a time-varying sliding surface is proposed in [21]. A 
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SOSM algorithm based on the Lyapunov method and the saturation technique in [22]. The 

SOSMC technique with a time-varying sliding surface can be a powerful tool for achieving 

robust and accurate control of uncertain systems [23]. Using time-varying sliding surfaces rather 

than continuous ones is an effective sliding surface design technique for enhancing controller 

performance. In [24], a time-varying sliding surface adjustment using a two-input single-output 

fuzzy logic controller is proposed for a ship steering model.  

This paper proposes a novel single-input, single-output (SISO) fuzzy logic control-based 

second-order sliding mode control system. The main advantage of the recommended control 

approach is that the sliding surface can be modified online in accordance with the values of the 

sliding variables to achieve the desired performance. Additionally, the sliding surface can rotate 

either clockwise or anticlockwise. The sliding surface change is computed utilizing a single-input 

single-output fuzzy logic control method, which results in a relatively simple methodology and 

quick computation time. Results from computer simulations show that the proposed control 

method outperforms the conventional second-order sliding mode controller with a fixed sliding 

surface. 

2. Design of Proposed SOSM Controller 

The proposed SOSM control technique is the modification of the SOSM control algorithm 

presented in [18]. The control design process has two steps. A novel SOSM controller is initially 

developed step-by-step in the first stage utilizing a modified version of the SOSM technique 

[25], and a thorough mathematical analysis is also performed. The second phase presents a 

comprehensive simulation strategy for the suggested SOSM algorithm.  

2.1 Brief Description of SOSM 

For instance, consider the nonlinear dynamical system. 

 �̇� = 𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)𝑈, 𝑠 = 𝑠(𝑡, 𝑥)                              (1) 

where 𝑥 ∈ ℝ𝑛  is the system state and 𝑈 ∈ ℝ is the control input.  f(t, x) and g(t, x) are the Smooth 

functions and the output is 𝑠 ∈ ℝ (Sliding Variable). The sliding variables s and �̇� are taken to be 

known. If the sliding variable s is considered to have a relative degree of 𝑟 = 2 in relation to the 

controller U, one has 

 �̈� = 𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈                                         (2) 

where 𝑎(𝑡, 𝑥) = �̈�|𝑈=0and 𝑏(𝑡, 𝑥) =
∂�̈�

∂𝑈
 The SOSM controller has two modes: U = 1 or U = -1. It is 

clear from the following relation that the switch µ can be identified [26]: 

    µ =
1 

2
 (1 + 𝑠𝑖𝑔𝑛(𝑈))                                          (3) 

However, it is evident from (3) that the sign function will result in an endless switching frequency 

whenever the sliding variables reach ⌈�̇�⌋2 + 𝛽1𝑠 = 0 This suggests that the switching frequency is 

too high for controller (3) to be implemented directly for the buck converter. Although it is 

impossible to know how large the range is, the operation frequency can still be limited within it. 

This can be achieved via a hysteresis modulation. In this paper, we rephrase (3) as 
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𝑠𝑎𝑡(⌈�̇�⌋2 + 𝛽1𝑠) = {

−1, for ⌈�̇�⌋2 + 𝛽1𝑠 < −1

⌈�̇�⌋2 + 𝛽1𝑠, for −1 < ⌈�̇�⌋2 + 𝛽1𝑠 < 1

1, for ⌈�̇�⌋2 + 𝛽1𝑠 > 1

   (4) 

providing the region indicated by Ω = −1 < ⌈�̇�⌋2 + 𝛽1𝑠 < 1 

The switching procedure will not take place in the region Ω after this update. As a result, this 

modification can be used to reduce the SOSM control's infinite switching frequency. In fact, the 

output voltage error will converge to the region where |⌈�̇�⌋2 + 𝛽1𝑠| < 1. 

It should be noted that the sliding variables will converge to the region |⌈�̇�⌋2 + 𝛽1𝑠| < 1. It is 

simple to acquire that �̇�|�̇�| < 1 − 𝛽1𝑠. If 𝑉(𝑠) =
1

2
𝑠2. A quick computation provides us 

with �̇�(𝑠) ≤
−𝛽1𝑠2+|𝑠|

|�̇�|
, this suggests that the sliding variables will eventually converge to the region 

s: |𝑠| ≤
1

𝛽1
 

2.2 SOSM with Time-Varying Sliding Surface 

An issue with a second-order sliding mode controller that has a fixed sliding surface is that the 

system is more susceptible to parameter changes when it is in reaching mode. This sensitivity 

can be decreased by shortening the duration of the reaching mode. Furthermore, it is difficult 

and time-consuming to determine the appropriate value of the sliding surface slope. A sliding 

surface design strategy that effectively improves controller performance is the use of time-

varying sliding surfaces as opposed to fixed ones. As a result, a key component of second-order 

sliding mode control systems is the method for altering the sliding surface online.  

Designing an SOSM controller U is now necessary for the output x₁ to follow the desired value 

x1d. To make the expression easier to understand, we first define ⌈𝑥⌋𝛼 = |𝑥|𝛼sign (x). The SOSM 

controller for system (2) is designed as 

      𝑈 = −𝑠𝑖𝑔𝑛(⌈�̇�⌋2 + 𝛽1(𝑠, �̇�)𝑠)                                          (5)  

with an appropriately tuned value for 𝛽1(𝑠, �̇�). 

The goal of this paper is to design a control strategy in which the output x₁ closely tracks a 

desired value x1d in the presence of the lumped disturbances w₁(t) and w₂(t). 

Three lemmas that form the cornerstone of the essential resources for the ensuing controller 

design are listed at the end of this section  

Lemma 1 (see [21]): The following inequality exists if p1 > 0 and 0 < p1 ≤ 1: 

|⌈𝑥⌋𝑝1𝑝2 − ⌈𝑦⌋𝑝1𝑝2| ≤ 21−𝑝2|⌈𝑥⌋𝑝1 − ⌈𝑦⌋𝑝1|𝑝2∀𝑥, 𝑦 ∈ ℝ          (6) 

Lemma 2 (see [18]): Let the constants c and d be positive. The following inequality is true for any 

positive function γ > 0: 

|𝑦|𝑑 ≤
𝑐

𝑐+𝑑
𝛾|𝑥|𝑐+𝑑 +

𝑑

𝑐+𝑑
𝛾−

𝑐

𝑑|𝑦|𝑐+𝑑∀𝑥, 𝑦 ∈ ℝ               (7) 

Lemma 3 (see [22]): Assume that p is a real number, where 0 < p <1: then one has 

  (|𝑥1| + ⋯ |𝑥𝑛|)𝑝 ≤ |𝑥1|𝑝 + ⋯ |𝑥𝑛|𝑝, ∀𝑥𝑖 ∈ ℝ, 𝑖 = 1, … , 𝑛.       (8) 

In light of the SOSM dynamics (2), controller (5), in the sense that, under controller (5), output x₁ 

will track the desired value x1d in a limited time, allows for the finite-time formation of SOSM s = 

ṡ = 0. 

Assume y1 = s and y2 = ṡ.  It is possible to rewrite controller (5) and system (3) as 



Vol.29 计算机集成制造系统 ISSN 

No. 10 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
45 

𝑦1̇= 𝑦2,  𝑦2̇ = 𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈                                    (9) 

𝑈 = −𝑠𝑖𝑔𝑛(⌈𝑦2⌋2 + 𝛽1(𝑦1, 𝑦2)𝑦1)                                (10) 

respectively. The adding a power integrator method suggested in [27] and [28] will be used to 

demonstrate the finite-time stability of the closed-loop systems (9) and (10) in the sections that 

follow. There will be two steps in the proof. In order to stabilise y1 to zero, a virtual controller 

called 𝑦1
∗ will first be built. To ensure that the state y2 will track 𝑦1

∗ in finite time, the real controller 

U will be created 

Step 1: Lyapunov function the one we select is  𝑉1(𝑦1) =
2|𝑦1|

5
2

5
 The result of taking the derivative of 

V1(y1) is 

𝑉1̇(𝑦1)= ⌈𝑦1⌋
3

2𝑦2
= ⌈𝑦1⌋

3

2𝑦2
∗ + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)                     (11) 

in which 𝑦2
∗ is a virtual control law. Designing 𝑦2

∗ so that 

𝑦2
∗ = −𝛽1(𝑦1, 𝑦2)

1

2⌈𝑦1⌋
1

2, 𝛽1(𝑦1, 𝑦2) > 0 produces 

𝑉1̇(𝑦1) = ⌈𝑦1⌋
3

2𝑦2
∗ + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)

= −𝛽1(𝑦1 , 𝑦2)
1

2⌈𝑦1⌋
3

2⌈𝑦1⌋
1

2 + ⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗)

= −𝛽1(𝑦1 , 𝑦2)
1

2𝑦1
2 + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)

       (12) 

Step 2: Select a function as 

 𝑉2(𝑦1, 𝑦2) = 𝑉1(𝑦1) + 𝑊(𝑦1, 𝑦2)                                  (13) 

with 𝑊(𝑦1, 𝑦2) = ∫  
𝑦2

𝑦2
∗ ⌈⌈𝑘⌋2 − ⌈𝑦2

∗⌋2⌋2𝑑𝑘. 

 The function V2(y1, y2) is C1
, positive definite, and proper, which may be simply proven. The 

estimation from (13) is as follows: 

   𝑉2
̇

 
(𝑦1 , 𝑦2) ≤ −𝛽1(𝑦1, 𝑦2)

1

2𝑦1
2 + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗) +

𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ + ⌈𝜉⌋2𝑦2̇

            (14) 

with 𝜉 = ⌈𝑦2⌋2 − ⌈𝑦2
∗⌋2. Following that, we estimate each term on the right hand side of (14). 

Using Lemma 1, we can determine 

⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗) ≤ |𝑦1|

3

2 |⌈𝑦2⌋2×
1

2 − ⌈𝑦2
∗⌋2×

1

2|

≤ 2
1

2|𝑦1|
3

2|𝜉|
1

2

         (15) 

However, with Lemma 2, we have 

2
1

2|𝑦1|
3

2|𝜉|
1

2 ≤ 2
1

2 ×
3

4
𝛾𝑦1

2 + 2
1

2 ×
1

4
𝛾−3𝜉2               (16) 

Using 2
1

2 ×
3

2
y =

𝛽1(𝑦1,𝑦2)
1
2

4
, one get y =

𝛽1(𝑦1,𝑦2)
1
2

3×2
1
2

. The estimation stated below is valid by (15) and 

(16): 

  ⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗) ≤

𝛽1(𝑦1,𝑦2)
1
2

4
𝑦1

2 + (
3

𝛽1(𝑦1,𝑦2)
1
2

)3𝜉2                 (17)          

Given that 
𝜕⌈𝑦2

∗⌋2

𝜕𝑦1
= −𝛽1(𝑦1, 𝑦2), it follows from Lemma 1 that, 

     
𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ ≤ |⌈𝑦2⌋2×

1

2 − ⌈𝑦2
∗⌋2×

1

2| |𝜉| |
𝜕⌈𝑦2

∗⌋2

𝜕𝑦1
𝑦2|

≤ 2
1

2𝛽1(𝑦1, 𝑦2)|𝜉|
3

2|𝑦2|

           (18) 

Since,|𝑦2| = |⌈𝑦2⌋2|
1

2 = |𝜉 + ⌈𝑦2
∗⌋2|

1

2 ≤ (|𝜉| + |𝑦2
∗|2)

1

2, according to the lemma 3 |𝑦2| ≤ |𝜉|
1

2 + |𝑦2
∗|. As a 

result, (18) can be rephrased as 
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𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ ≤ 2

1

2𝛽1(𝑦1 , 𝑦2)|𝜉|
3

2 (|𝜉|
1

2 + |𝑦2
∗|)

≤ 2
1

2𝛽1(𝑦1 , 𝑦2)𝜉2 + 2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2

       (19) 

Once more applying Lemma 2, one has 

2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2

≤ 2
1

2𝛽1(𝑦1 , 𝑦2)
3

2 ×
1

4
𝛾𝑦1

2 + 2
1

2𝛽1(𝑦1, 𝑦2)
3

2 ×
3

4
× 𝛾−

1

3𝜉2
        (20) 

If 2
1

2𝛽1(𝑦1, 𝑦2)
3

2 ×
1

4
𝛾 =

1

2
𝛽1(𝑦1, 𝑦2)

1

2, then 𝛾 =
21/2

𝛽1(𝑦1,𝑦2)
 follows. By using (20) and a straightforward 

calculation, it is evident that, 

   2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2 ≤
1

2
𝛽1(𝑦1, 𝑦2)

1

2𝑦1
2 + 𝛽1(𝑦1, 𝑦2)

11

6 𝜉2    (21) 

Putting (21) into (19) results in 

   
𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ ≤

1

2
𝛽1(𝑦1 , 𝑦2)

1

2𝑦1
2 + (2

1

2𝛽1(𝑦1, 𝑦2) + 𝛽1

11

6 )𝜉2       (22) 

From (14) it may be inferred that by combining (17) and (22) 

 𝑉2̇ 
(𝑦1, 𝑦2) ≤ (

27

𝛽1(𝑦1,𝑦2)
3
2

+ 2
1

2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1 , 𝑦2)
11

6 )𝜉2

−
𝛽1(𝑦1,𝑦2)

1
2

4
𝑦1

2⌈𝜉⌋2(𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈)

       (23) 

In light of the knowledge that ⌈𝑦2⌋2 − ⌈𝑦2
∗⌋2 = ⌈𝑦2⌋2 + 𝛽1(𝑦1, 𝑦2)𝑦1 = 𝜉 and 𝑏(𝑡, 𝑥) =

𝑉𝑖𝑛0

𝐿0𝐶0
, putting (12) 

into (23) results in. 

𝑉2̇ 
(𝑦1, 𝑦2) ≤ −

𝛽1(𝑦1, 𝑦2)1/2

4
𝑦1

2 + (
27

𝛽1(𝑦1, 𝑦2)3/2

+21/2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1, 𝑦2)11/6)𝜉2

+𝜉2|𝑎(𝑡, 𝑥)| − 𝑏(𝑡, 𝑥)⌈𝜉⌋2. 𝑠𝑖𝑔𝑛(𝜉)

                   ≤ −
𝛽1(𝑦1, 𝑦2)1/2

4
𝑦1

2 + (
27

𝛽1(𝑦1, 𝑦2)3/2

+21/2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1, 𝑦2)11/6)𝜉2

+𝜉2|𝑎(𝑡, 𝑥)| − 𝜉2𝑏(𝑡, 𝑥)

 

Based on condition (9), we are aware that 

𝑏(𝑡, 𝑥) > |𝑎(𝑡, 𝑥)| +
27

𝛽1(𝑦1, 𝑦2)3/2
+ 21/2𝛽1(𝑦1, 𝑦2)

+𝛽1(𝑦1, 𝑦2)11/6 +
1

4
𝛽1(𝑦1 , 𝑦2)1/2

 

It suggests that 𝑉2̇ 
(𝑦1, 𝑦2) ≤ −

𝛽1(𝑦1,𝑦2)1/2

4
(𝑦1

2 + 𝜉2). Due to the fact 

∫  
𝑦2

𝑦2
∗

⌈⌈𝑘⌋2 − ⌈𝑦2
∗⌋2⌋2𝑑𝑘 ≤ |𝑦2 − 𝑦2

∗||𝜉|2 ≤ 2
1
2|𝜉|

5
2 

we get 

𝑉2(𝑦1, 𝑦2) ≤ 2 (|𝑦1|
5

2 + |𝜉|
5

2)                                            (24) 

By assuming that 𝑐 = 2−
14

5 𝛽1(𝑦1, 𝑦2)
1

2,   𝛼 =
4

5

 

 and applying Lemma 3 and (24), we get 𝑉2
̇

 
(𝑦1, 𝑦2) +

cV2
𝛼(𝑦1, 𝑦2) ≤ 0. Observe that 0 < α < 1. By using controller (10), system (9) can be globally 

stabilised in finite time according to the finite-time Lyapunov theory presented in [29]. 

2.3 Fuzzy Logic Based Sliding Surface Adjustment of Second Order Sliding Mode Controllers. 

The above algorithm is a sliding mode controller with a new sliding surface ⌈�̇�⌋2 + 𝛽1𝑠. However, 

providing a clear formula to compute the parameter 𝛽1 is challenging. The approximate rule for 

designing 𝛽1 is derived from the study of the dependence of the system response on the slope 
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𝛽1. It is found that the controller with maximum slope 𝛽1 leads to faster error convergence, but 

the tracking accuracy can be degraded. If the value of 𝛽1  is too high, it can cause large 

overshoot in the system states and may lead to unacceptable performance.  Therefore, there is a 

trade-off between error convergence time and tracking time. This can be rectified by moving the 

sliding surface of the second order sliding mode controller, as illustrated in figure 1. Hence, the 

best solution is to utilize a time-varying slope, which depends on s and �̇�, ie., 𝛽1(𝑠, �̇�).  

 

Figure. 1 Movement of Sliding Surface 

In order to ensure stability, the sliding surface slope must be positive. The movement of the 

sliding surface can be determined by updating the value of the sliding surface slope online 

based on the values of the sliding variable s and its derivative �̇�. The link between the error 

variables and the slope of the sliding surface is not exactly modelled mathematically. Therefore, 

a single-input single-output fuzzy logic controller is created based on the approximation rules 

produced from the expert knowledge can update the sliding surface slope. 

The difference between the magnitudes of s and �̇�, as provided in Equation (25) sd is the input to 

the single input-single output FLC. The sliding surface slope is given by scaling the FLC output 

by an output scaling factor. 

𝑠𝑑 = |𝑠| − |�̇�|                                                     (25) 

sd can have both positive and negative values. To guarantee stability, the FLC's output must, 

however, always be positive.  

As shown in Figure 2, the membership functions of the input sd are negative big (NB), negative 

medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and 

positive big (PB), while the membership functions of the output are very very small (VVS), very 

small (VS), small (S), medium (M), big (B), very big (VB) and very very big (VVB) as shown in figure 

3. The rule base shown in Table 1 can accomplish this. 
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Figure. 2 Input membership functions 

 

 

Figure. 3 Output membership functions 

 

 

Table 1 One-dimensional Fuzzy Rule Base 

Sd NB NM NS ZE PS PM PB 

Output VVB VB B M S VS VVS 

 

Defuzzification can be accomplished using the centroid approach. Figure 4 displays the input 

output connection of the single input, single output fuzzy logic controller. 

 

 

Figure 4. Input-Output Characteristics of Single Input-Single Output FLC 

The control strategy can now be illustrated as seen in Figure 5.  

 

 

Figure 5. Proposed Control Scheme 

 

3. Results and Discussion 

The proposed controller is evaluated in comparison with a fixed sliding surface controller for a 

nonlinear system [18]. Figures 6-13 show the simulation results for the proposed controller and 
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the typical second-order sliding mode controller with a fixed sliding surface. Figure 6 shows the 

system responses for the proposed controller and the conventional second-order sliding mode 

controller with different values of 𝛽1. The proposed controller responds faster than the 

conventional one with a fixed sliding surface. 

 

 

Figure 6. Responses of the Proposed Controller and SOSM Controller with 𝛽1 = 10 and 𝛽1 = 2.5 

 

Figure 7. Sliding Variable of the Proposed Controller and SOSM Controller with 𝛽1 = 10 and 𝛽1 =

2.5 
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Figure 8. Rate of Change of Sliding Variable of the Proposed Controller and SOSM Controller 

with 𝛽1 = 10 and 𝛽1 = 2.5 

 

Figure 9. Control Input of the Proposed Controller and SOSM Controller with 𝛽1 = 10 and 𝛽1 =

2.5 

 

Figure 10. Error Convergence of the Proposed Controller and SOSM Controller with 𝛽1 = 10 and 

𝛽1 = 2.5 
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Figure 11. IAE of Sliding Variable of the Proposed Controller and SOSM Controller with 𝛽1 =

10 and 𝛽1 = 2.5 

 

 

Figure 12. ITAE of Sliding Variable of the Proposed Controller and SOSM Controller with 𝛽1 =

10 and 𝛽1 = 2.5 

 

Figure 13. Responses of the Proposed Controller with Various Initial Conditions 
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Table 2. Performance comparison 

Parameter Proposed 

Controller 

SOSM 

with 

β1=10 

SOSM 

with 

β1=2.5 

Rise Time 0.028s 0.238s 0.475s 

Settling 

Time 

 

0.033s 

 

0.285s 

 

0.565s 

Peak Time 0.039s 0.347s 0.693s 

Peak 

Overshoot 

 

0 

 

0 

 

0 

IAE 0.004 0.035 0.069 

ITAE 0.012 0.104 0.208 

 

The proposed controller and the typical second-order sliding mode controller with 𝛽1=10 and 

𝛽1=2.5 have rising times of 0.028s, 0.238s, and 0.475s, and settling times of 0.033s, 0.285s, and 

0.565s, respectively. In the system with the proposed controller, the time required for the 

response to reach the peak value is 0.039s, whereas it is 0.347s and for the typical second-order 

sliding mode controller 𝛽1=10 and 0.693s for the typical second-order sliding mode controller 

𝛽1=2.5 respectively. In all cases, the steady-state error and overshoot are zero. Figure 7 depicts 

the sliding variables. The proposed controller achieves a faster response than the conventional 

second-order sliding mode controller by exerting significantly higher control effort during the 

first phase as shown in figure 9.  Figure 10 shows how the suggested technique has a faster rate 

of error convergence. The proposed controller is faster throughout the response, as indicated by 

the IAE and ITAE curves, respectively, in Figures 11 and 12. The IAE indices for the proposed 

controller, the conventional second-order sliding mode controller with 𝛽1=10, and the 

conventional second-order sliding mode controller with 𝛽1=2.5 are 0.004, 0.035, and 0.069, 

respectively, whereas the ITAE indices are 0.012, 0.104, and 0.208, confirming the faster response 

of the system with the proposed controller. Figure 13 shows the responses of the proposed 

system with various initial conditions. The proposed method outperforms the standard method 

in terms of speed and robustness because it performs equally well regardless of the initial 

conditions. The performance metrics for the responses are summarised in Table 2. 

According to simulation results, the proposed controller responds faster than a conventional 

second order sliding mode controller. To improve dynamic performance, stability, robustness, 

and tracking accuracy are not sacrificed. 

 

4. Conclusion 

This work develops a novel fuzzy logic controller-based second-order sliding mode control. It is 

shown that the dynamic response of the controller can be enhanced by rotating the sliding line 
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in the phase plane using a fuzzy logic control. Results from simulations of a dynamic uncertain 

system are used to demonstrate the effectiveness of the suggested approach. The suggested 

controller is compared to a conventional second-order sliding mode controller with a fixed 

sliding surface using a dc-dc buck converter. Comparing the proposed controller to a second 

order sliding mode controller with a fixed sliding surface, the simulation results show that the 

suggested controller has a quick dynamic reaction, which can be read as lowering the reaching 

mode time and so enhancing the dynamics. In addition, the suggested control mechanism is 

simple, requires less computing time and easy to implement. 
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