ISSN

Fractal Model to Interpret Porosity-Dependent Hydraulic Properties for Unsaturated Soils

Dr. Ravindra D Nalawade, Prof. (Dr.) B.K. Sarkar, Prof. (Dr.) Reena Singh

Faculty, Department of Civil Engineering AISSMS College of Engineering, Shivajinagar, PUNE-411001

MES's, Pillai HOC College of Engineering & Technology, Rasayani Taluka Panvel, Dist, Navi Mumbai, Maharashtra 410207, India

MES's, Pillai HOC College of Engineering & Technology, Rasayani Taluka Panvel, Dist, Navi Mumbai, Maharashtra 410207, India

Abstract:

This paper presents a basic fractal model to evaluate the impacts of starting porosity on the dirt water maintenance bend and pressure driven conductivity of unsaturated soils. In the proposed applied model, the difference in most extreme pore span, which generally decides the difference in the air-passage esteem, is straightforwardly connected with the fractal aspect of pore volume (D) and porosity change. The water powered properties of unsaturated soils are then represented by the greatest pore sweep, the fractal aspect of pore volume (D), and the fractal aspect of drainable pore volume (Dd \leq D). The new fractal model eliminates the experimental fitting boundaries that have no actual significance from existing models for porosity-subordinate water maintenance and pressure driven conduct and utilizes boundaries of fractal aspects that are characteristic for the idea of the fractal permeable materials. The proposed model is then approved against exploratory information from the writing on soil-water maintenance conduct and unsaturated conductivity.

Keywords: Fractal, Model, Interpret, Porosity-Dependen, Hydraulic, Properties, Unsaturated, Soils.

DOI: 10.24297/j.cims.2023.1.11

1. Introduction

Pressure driven properties typically allude to the properties that are connected with the water maintenance conduct and the water driven conductivity of soil, which have various applications in geotechnical designing [1-6]. Soil-water maintenance conduct is generally depicted by the dirt water maintenance bend (SWRC or the dirt water trademark bend, SWCC), which is characterized as the connection between the compelling level of immersion, Se, and the matric pull, s. Alternately, the pressure driven conductivity of soil is normally depicted utilizing the water powered conductivity capability (HCF), which is characterized as the connection between the general coefficient of conductivity, Kr (the proportion between the unsaturated and

Computer Integrated Manufacturing Systems

immersed values, K/Ks), and the matric attractions, s, or the viable level of immersion, Sec[7][8]. It is by and large perceived that the pressure driven conductivity for unsaturated soils can be successfully assessed utilizing the dirt water maintenance bend, which is one of the main uses of SWRC [7].

Various conditions have been proposed to demonstrate SWRCs for somewhat immersed soils [7-11] and for HCFs [7, 11]. A portion of these situations depend on a utilitarian relapse of the trial information, while others depend on observational connections with other soil properties, for example, molecule or pore-size dissemination, porosity, and explicit surface region. Nonetheless, concerns are much of the time raised about the experimental idea of those models since they shed no light on the crucial actual rules that oversee the cycles of unsaturated stream and seepage [5]. A few actual models for soil water powered properties in view of the idea of fractal calculation for soil surface and pore structure have been created[7][8][9].

2. Fractal Porous Medium

As displayed in Figure 1, a permeable medium (V0) contains a wide scope of pore sizes, which decline in the mean sweep from r0 to ru (u >> 1) and in pore volume from P0 (the volume of the greatest pore) to Pu (the volume of the base pore). The pores are additionally partitioned into two classes [6,7]: interparticle pores (counting interaggregate macropores and interaggregate micropores), which can be distorted by means of outside loads and dewatered by the narrow cycle or warming, and intraparticle pores, which contain water that is unequivocally limited with soil solids [4][5][7]. Mercury interruption porosimetry (MIP) test can be utilized to decide the appropriation of interparticle pores of soil [8]. During the test, mercury was packed into pores with various radii at various interruption pressures. The MIP method has been generally utilized for geomaterials like soils [6][7] [8]. The significant limits of MIP method incorporate (1) it can quantify the biggest accessible admittance to a pore (i.e., the size of the entry towards a pore; for most cases, the entry size to a pore can be considerably more modest than the internal pore size.) and (2) every one of the estimations depend with the understanding of chamber pores [3] [6].

Intraparticle pores are no deformable, and the intraparticle pore water can't be got dried out in t hat frame of mind of this exploration. At the end of the day, unequivocally limited water can be r oughly viewed as a piece of the dirt solids (Vm in Figure 1) in this examination. The mean range of the interparticle pores diminishes from r0 to rm–1, and the pore volume diminishes from P0 t

ISSN

o Pm-1. The mean span of the interparticle pores diminishes from rm to Ru, and the pore volum e diminishes from Pm to Pu [4] [5] [7].

Figure 1: Characterization of pores.

Following Rieu and Sposito [2][5], a genuinely permeable medium can be thought to be a fractal medium in which there is self-comparability of the pore span in the whole space from r0 to ru. A s far as pore space, we accept thatwhere E is the Euclidean aspect, which is equivalent to 2 for tw o-layered objects, (for example, the Sierpinski triangle and the Sierpinski rug) and 3 for three-lay ered objects, (for example, the Menger wipe), individually. γ is a direct likeness proportion that is acquainted with depict the scaling property of a fractal medium. For instance, γ is equivalent to 1 /3 for the Sierpinski cover and 1/2 for the Sierpinski triangle, separately. VI is characterized as the ith self-comparative fractional volume, which contains all pores that have a span \leq RI. Vm–1 is th e self-comparable incomplete volume that contains the littlest interparticle pores (range rm–1) a nd Vm, which represents the volume of a dirt strong molecule that is no deformable and contain s all of the intraparticle pores. In the event that the ith self-comparable fractional volume can be addressed by its mean range RI, like pores in the fractal medium [2], we have.

Computer Integrated Manufacturing Systems

1006-5911

Figure 2: Schematic diagram of fractal porous medium (Sierpinski carpet).

The self-likeness property of a fractal permeable medium implies that the (I + 1) Th selfcomparative fractional volume rehashes a similar pore property of the ith self-comparable halfway volume. For instance, for the Sierpinski cover (Figure 2), V0 contains 1 P0 and 8 (=32 – 1) V1, V1 contains 1 P1 and 8 V2, Vm–1 contains 1 Pm–1 and 8 Vm. As a general rule, such a selfsimilitude can be composed aswhere a consistent number N represents the quantity of the (I + 1) Th self-comparative halfway volume in the ith self-comparable fractional volume. For the Sierpinski cover, as displayed in Figure 2, N = 8.

As per condition (3), the all-out volume V0 can be composed aswhere NmVm represents the complete strong volume (Versus) in this permeable medium. Furthermore, the pore coefficient Γ is characterized as the proportion between the ith pore volume and the ith self-comparative incomplete volume, i.e., $\Gamma = Pi/Vi$. $\Gamma = (1/3)2$ for the Sierpinski cover. VI+1/Vi can be composed as an element of Γ , i.e,

Fig.3: Interpret Porosity-Dependent Hydraulic Properties for Unsaturated Soils.

计算机集成制造系统

ISSN

No.1

Computer Integrated Manufacturing Systems

1006-5911

Water in the interparticle pores can be depleted by applying soil matric pull. In the event that the fractal permeable medium containing interparticle pores with sweep > ri is totally dried because of the slender stream process, the volumetric water content θ i can be composed as In any case, some interparticle pores with span > ri might be detached by solids and pores with a sweep not as much as ri. As drying happens, not all pores of a given size channel at the proper pull due to inadequate pore network [6, 7]. The quantity of depleted pores, Nd, is thought to be fractal and corresponding to the force of $(1/\gamma)$, as communicated bywhere Dd (\leq D) is the fractal aspect for the drainable pore space characterized by Wonderful [7] and Cihan et al. [6]. Hypothetically, Dd is equivalent to D – log (Pd)/log (γ), where Pd is the scale-invariant seepage likelihood for the pore network [5]. Tentatively, Dd can be assessed from the water maintenance bend; for instance, Crawford et al. [8] revealed Dd values going from 2.90 to 2.97 (E = 3) alongside comparing D qualities (acquired from flimsy segment investigation) of somewhere in the range of 2.94 and 2.98, for eight Japanese soils.

3. Porosity-Dependent HCF

The pressure driven conductivity capability (HCF) assumes an urgent part in the stream and transport processes under both immersed and unsaturated circumstances. The HCF for unsaturated soils is normally addressed by the overall water driven conductivity Kr, which is characterized as the proportion between the unsaturated water powered conductivity K and the relating immersed water powered conductivity Ks. Various techniques have been proposed to evaluate the relative pressure driven conductivity Kr for unsaturated soils [7, 2, 9, 6], and the majority of them express Kr as a component of the powerful level of immersion (Se), volumetric water content (θ), and matric pull (s). Among the proposed HCFs for unsaturated soils, the most refered to HCF is that proposed by Mualem [7]:

Fig.4: Fractal Model to Interpret Porosity-Dependent Hydraulic Properties for Unsaturated Soils.

4. Results

Laliberte et al. [6] estimated the SWRCs (Se versus s) and HCFs (Kr versus s) of a residue soil, which is alluded to as the Touchet residue soil, with various beginning porosities. A Touchet sediment topsoil is coarse residue, comprising of 32% sand, 53% residue, and 15% dirt, with a molecule thickness of 2.599 g/cm3. The underlying porosities for the water maintenance tests are 0.493 (e* = 0.972), 0.463 (e = 0.862), and 0.430 (e = 0.754). The underlying porosities for the water driven conductivity tests are 0.503 (e = 1.012), 0.478 (e = 0.916), 0.449 (e = 0.815), 0.423 (e = 0.733), and 0.395 (e = 0.653). The informational collection for the loosest example (ϕ * = 0.493) of the water maintenance test is utilized for adjustment.

The boundaries for SWRC are set to = 4.5 kPa, D = 1.7, and Dd = 1.05, which bring about a worth of R2 = 0.9909 for all informational indexes with three different beginning porosities (Figure 6(a)). As displayed in Figures 6(b)- 6(f), the deliberate relative pressure driven conductivities for five different beginning porosities (0.503~0.395) are replotted in the Kr-s plane (twofold logarithmic scales), which are the expectations gotten utilizing condition (26). The anticipated Kr-s bends concur with the trial information sensibly well, which affirms that the proposed porosity-subordinate fractal HCF model (i.e., condition (26)) catches well the impacts of the underlying porosity on the dirt's unsaturated penetrability.

5. Conclusions

A straightforward actual model in view of fractal math was proposed to evaluate the impacts of beginning porosity on the dirt water maintenance bend (SWRC) and the pressure driven conductivity capability (HCF) for unsaturated permeable media. The proposed fractal model includes three boundaries: (1) the air-section esteem that is connected with the size of the most extreme pores, (2) the fractal aspect of pore volume (D), and (3) the fractal aspect of drainable pore volume (Dd). The scope of D and Dd is restricted to between E - 1 and E (i.e., Euclidean aspect). The contrast among D and Dd ($D \ge Dd$) suggests that fragmented pore network might exist in the permeable medium. The upsides of D and Dd can be aligned advantageously utilizing one informational collection of the water maintenance tests at introductory porosity. A relapse examination utilizing the technique for least squares demonstrates that the proposed

model is legitimate to repeat the porosity-subordinate SWRCs and HCFs for different unsaturated soils.

References

- 1. S.-L. Shen, Z.-F. Wang, J. Yang, and C.-E. Ho, "Generalized approach for prediction of jet grout column diameter," *Journal of Geotechnical and Geoenvironmental Engineering*, vol. 139, no. 12, pp. 2060–2069, 2022.
- S.-L. Shen, J.-P. Wang, H.-N. Wu, Y.-S. Xu, G.-L. Ye, and Z.-Y. Yin, "Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing," *Ocean Engineering*, vol. 110, pp. 174–182, 2022.
- S.-L. Shen, Y.-X. Wu, Y.-S. Xu, T. Hino, and H.-N. Wu, "Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin," *Computers and Geotechnics*, vol. 68, pp. 196–207, 2021.
- 4. S. L. Shen, Z. F. Wang, and W. C. Cheng, "Estimation of lateral displacement induced by jet grouting in clayey soils," *Géotechnique*, vol. 67, no. 7, pp. 621–630, 2021.
- S.-L. Shen, Y.-X. Wu, and A. Misra, "Calculation of head difference at two sides of a cutoff barrier during excavation dewatering," *Computers and Geotechnics*, vol. 91, pp. 192–202, 2021.
- Y.-S. Xu, H.-N. Wu, J. S. Shen, and N. Zhang, "Risk and impacts on the environment of free-phase biogas in quaternary deposits along the coastal region of Shanghai," *Ocean Engineering*, vol. 137, pp. 129–137, 2020.
- 7. Y. Mualem, "A new model for predicting the hydraulic conductivity of unsaturated porous media," *Water Resources Research*, vol. 12, no. 3, pp. 513–522, 2010.
- 8. R. Brooks and A. Corey, *Hydraulic Properties of Porous Media*, Colorado State University, Fort Collins, CO, USA, 1964.
- 9. D. G. Fredlund and A. Xing, "Equations for the soil-water characteristic curve," *Canadian Geotechnical Journal*, vol. 31, no. 4, pp. 521–532, 2019
- W. Gardner, "Mathematics of isothermal water conduction in unsaturated soils, highway research board special report 40," in *Proceedings of International Symposium on Physico-Chemical Phenomenon in Soils*, pp. 78–87, Washington, DC, USA, 1956
- M. T. van Genuchten, "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1," *Soil Science Society of America Journal*, vol. 44, no. 5, pp. 892– 898, 1980.