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Abstract: 

Miniaturization trends and rapid advancements in the medical device industry have made it 

possible for everyone's physiological signals and routine behaviors to be monitored 

conspicuously and ubiquitously, without anyone even realizing its happening. Energy efficiency 

is one of the most important and hotly contested topics in healthcare because of the limited 

power of traditional wearable sensors while sensing. In this research, the Texas Instruments 

Analog-Front-End (AFE) chip type ADS1292R is used to create a wearable, wireless 

Electrocardiogram (ECG) tracking solution relying on a single chip. The developed chip records 

real-time ECG data on 2 chosen channels to continually monitor each person's heart activity. 

These four components make up a Right-Leg-Drive (RLD) circuit: two channels, an AFE, a lead-

off sensor, and a medical screening signal. The empirical design took into account 60 hertz of 

background noise and human ECG data obtained at speeds ranging from 60 to 120 beats per 

minute (BPM). Finally, many standard TPC algorithms are compared with a suggested “Adaptive 

Energy-Efficient Transmission Power Control” (AETPC) algorithm. The empirical results show that 

the designed device efficiently gathers ECG data in real-time and that the suggested AETPC 

algorithm saves 35.5% more energy than traditional TPC while having a little larger Packet-Loss-

Ratio (PLR). 

Keywords: Healthcare, ECG data, Wearable, Adaptive Energy-Efficient Transmission Power 
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DOI: 10.24297/j.cims.2023.20 

 

1. Introduction 

Traditional communication networks that were largely created for applications focused on 

human beings are experiencing enormous issues as wearable devices grow more integrated into 

our daily lives. Fifth-generation (5G) wireless networks are expected to enable new levels of high 

capacity, low latency, and widespread connectivity. The main difficulties that wearable 
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communication devices face are discussed in this paper. Device-to-device (D2D) 

communication, software-defined networks (SDN), cloud/edge technologies, and cloud radio 

access networks (CRAN) are all combined in cloud/edge communication architecture. With the 

help of this multilayer communications architecture, compute offloading is possible. This 

enables the transfer of computationally demanding and latency-sensitive applications to 

adjacent edge nodes via cellular or other wireless technologies, or to close-by devices via D2D 

communications (Sun et al., 2018). It has been suggested that there are problems with 

processing and analyzing data from wearable devices as well as traditional cardiovascular 

diagnostic tests. Deep learning-based automatic classification and diagnosis of aided ECG 

signals for COVID-19 patients is an effective solution to these issues. The introduction of 5G has 

also made it possible to process a sizable volume of monitoring data using a solution that has 

high throughput and low latency. Several open source platforms, like Ignite, Geode, and Spark 

streaming, have been developed as a result of the development of big data technologies and 

allow for the real-time analysis of operational data. Because this area of study is constantly 

getting better, artificial intelligence is being used more and more frequently in medical 

diagnostics. Deep neural networks (DNN) have become frequently utilized in automatic ECG 

diagnosis in recent years to meet the demands of high-speed and high-precision ECG analysis 

(Tan et al., 2021). Edge computing connects military organizations to wearable computing 

devices on the battlefield, improving, securing, and raising troop decision-making accuracy. 

Along with all of this, edge computing's scalability, flexibility, and dependability make it a 

desirable substitute for military automation on a global scale. According to projections, the fifth 

generation of cellular network technology will have ten times more capacity than the legacy 

network that is now in use (5G). The goal of 5G is to link digital devices that require a lot of data 

to operate automatically, not only to increase network speed. Most major 5G applications will 

primarily target the military rather than the general population (Sharma et al (2020). To fuel the 

Internet of Things, 5G wireless communication technology is anticipated (IoT). They provide 

methods for incorporating wireless cloud platforms for dense cooperative signal and 

information processing, taking into account the rapidly expanding IoT device market (WCN). 

They give a summary of the WCN architecture and the cloud characteristics that go along with it, 

ranging from distributed synchronization and sensing to cooperative networking. For crucial 

process monitoring, the 5G evolution provides a multi-Radio Access Technology (RAT) 

architecture, in which the WCN nodes connect to the current field equipment using a wireless 

Industrial Internet of Things (IIoT) standard (Soatti et al (2019). The 5G and 6G communications, 

as well as other emerging developments, including new services, will address the recent 
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revolution in smart wearables and wireless devices. Smart wearables are useful in many aspects 

of daily life, such as healthcare, entertainment, and search and rescue. The wearables of the 

future typically blend inconspicuously and discretely with clothing. Because they are often 

constructed on stiff substrates, antennas in systems for on-body applications have proven 

difficult. The user's ability to interact with some electronic gadgets can be expanded, though, by 

integrating antennae into clothing. The task of designing textile antennas is difficult because the 

materials' properties influence the antenna behavior and because fabrics are very flexible and 

compressible (Loss et al. (2020)).  

 

The following describes the paper's contribution: 

1. We created the "Adaptive Energy-Efficient Transmission Power Control (AETPC) algorithm" to 

enable 5G for wearable technology and human-computer interfaces. 

2. A wearable, wireless Electrocardiogram (ECG) tracking system dependent on a single chip is 

created using the Texas Instruments Analog-Front-End (AFE) chip type ADS1292R. 

The sections of this paper are listed below: Section II provides a list of pertinent works and a 

description of the issue, Section III presents materials and methods, Section IV discusses the 

suggested strategy of adaptive energy-efficient transmission power control, and Section V 

presents performance analysis, and Section VI concludes the investigation. 

 

2. Related Works 

Alrashid and Nasri (2021) presented research on innovative wireless technology created for 

"Wireless Body Area Sensor Networks," solving signal conditioning concerns, bandwidth 

allocation, safety, and upcoming research problems (WBASN). Wearable technology presents a 

potent new tool because of medical services, surgical rehabilitation services, and IoT systems. In 

addition to monitoring body heat, heart rate, pulse rate, higher blood pressure, electro-dermal 

activity, as well as other health indicators, a wireless body-area network can also record 

electrocardiograms. Wearable gadgets use radio frequency identification (RFID) technology and 

electronics. RFID antennas and technology are discussed in (Sabban, A., 2020).  

 

Anline and Gomathy (2021) examined the design and communication methods for e-health 

systems that permit continuous smart monitoring via 5G. The architecture of the 5G network is 

also apparent. By going above and above the necessary properties of high throughput, hyper 

latency, high population density, hyper-dependability, and superior energy efficiency, emerging 

5G networks significantly improve smart healthcare coverage. 
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Varsie et al. (2020) evaluated the requirements of the use cases stated in the NR-REDCAP 3GPP 

Study Item of Release 17—such as wearables, industrial IoT, and video surveillance—with the 

restrictions of such capabilities. It also discusses the difficulties of creating a new air interface for 

5G devices with constrained sub-6 GHz band capabilities as well as the crucial enablers needed 

to meet those use case requirements. 5G will overcome this problem even with the continued 

usage of an energy-intensive Ultra-Dense Network (UDN). 

 

Slalmi et al. (2020) created a New Radio Access that uses an energy-efficient Call Admission 

Control (CAC) modeling technique for the Internet of Things (IoT) (NR 5G). 

 

Jin et al. (2022) examined the shortcomings of wearable technology and considered how edge 

computing could help to mitigate these shortcomings. They then thoroughly assess earlier 

studies from four perspectives: computation scheduling, information perception, energy 

conservation, and security. 

 

Heidari et al. (2021) suggested that different power harvesting and management techniques at 

the circuit, device, and system levels will be the most important component of IoT devices. The 

self-power and sustainability of IoT devices in the 5G network should be a top priority for the 

electronics and communications sectors. 

 

Dananjayan and Raj (2021) proposed that wearables with trustworthy sensors and a 5G network 

can be utilized to remotely monitor patients. Virtual patient consultations, augmented reality 

(AR) and virtual reality (VR)-based simulated surgeries, robotic surgeries powered by artificial 

intelligence (AI), real-time maintenance of ambulances and other medical devices, and dynamic 

huge data repositories are additional applications for 5G technologies in the healthcare industry. 

To help designers create a device that can be used in the health care business with 5G 

technology along with upcoming 6G wireless networks, a critical analysis of medical equipment 

and the many optimization techniques used is offered (Kouhalvandi et al. (2022)). 

 

Wang et al. (2022) started by looking at the frameworks currently in place for wearable device 

applications in 5G telemedicine and identified current difficulties. Then, using 5G mobile edge 

computing (MEC), they presented a multi-layer telemedicine model that dynamically links 

wearable technology with the Open electronic medical records system (EMR). 
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3. Material And Methods 

A) Wearable ECG Collection Platform 

This effort created a wearable ECG and breathing system on a single chip using a Texas 

Technologies "Analogue Front End" (AFE) chip type ADS1292R. There are numerous channels on 

this chip, notably ones for real-time continuous Electrocardiography and continuous-time 

breathing monitoring. A circuit diagram of the semiconductor ADS1292R is shown in Figure 1. 

The ADS1292R processor's wearable upgrades included two bitmap delta-sigma ADCs (Analog-

to-Digital converters) with variable boosting amps and collection levels ranging from 1 to 

12..The ADCs were configured with a carrier frequency range of 125 to 8000 samples per second 

(SPS). Digital data was managed by an SPI link, or serial peripheral interface. 

 

Figure 1: The ADS1292R chip's block diagram. 

 

Figure 2 uses a typical Holter that has three connected leads and one lead (E1-E3) points to 

demonstrate to the intended wearable system measures ECG. 
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Figure 2: Measuring electrocardiograms (ECGs) using a single lead standard Holter 

 

The leads that were discovered were near the cardiac axis. This efficient and exact method 

generates a high-quality ECG signal with improved performance in clinical activities when the 

cardiac axis is modified appropriately and the site is chosen. The positioning of the cardiac axis 

and lead selection allows for a transparent inspection and diagnosis as well as the transfer of 

useful information. Ag/AgCl electrodes are used in the experimental design of this study to 

capture and record the signals of human vital signs. On our test bed, a third reference electrode 

was placed 10 cm away in the lower-left corner, and two electrodes were placed on the surface 

of the chest extremely close to the heart. With a greater R-peak amplitude and QRS-complex 

waves, such a design produces ECG signals that are neater, cleaner, and more effective. The 

created wearable gadget had metal buttons on one side that connected it to the other side and 

was fastened to the skin on the other. Other academics have also been developing hardware-

based platforms for the use of wearable technology to acquire ECG data to set up investigations. 

Additional details regarding the created ECG equipment are provided in Table 1, including its 

multiple methods, the necessary power, and the battery type. 

Table 1: Numerous techniques exist for utilizing energy. 

Methods Energy consumption cell 

Leadoff detected  Lowest 14.4 NW, Highest 52.8 µW  80% of power is saved as 

compared to the conventional 
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batteries 

Standby 160 μW overall consumption, and 

Low Power: 335 μW/channel 

Coin cell battery 

 Acquisition of Noise 

ECG 

42 mW Ten-year battery lifetime in the 

absence of system power 

 

B) Electrocardiogram Data Filtration 

A high-pass filter (HPF) with a cutoff frequency of 0.67 Hz and a low-pass filter (LPF) with a cutoff 

frequency of 60 Hz was used to produce three filters that successfully remove noise from ECG 

data (cutoff frequency 100 Hz). The biquade direct form transposed-II algorithm and the bilinear 

transformation method were used to create the filters. 

 

This psychology indicates that wearable technology collects from the human body typically 

contains some extra undesired noise. Therefore, it is essential to remove that unwanted 

information from biosignals to acquire unambiguous signals for use in subsequent healthcare 

applications. The hardware platform cannot completely filter out all of the sounds that can 

disrupt biomedical engineering obtained from the human body. To exclude irrelevant data from 

the first acquired signals from wearable devices, it is vital to utilize the appropriate filters. The 

key constraint for completely filtering noisy information, capacitors, are used in the design of 

hardware filters; as a result, the justification of hardware filters is not fully addressed from the 

points of view of both effective construction and high visibility (figure 3). 

 

They are frequently essential to code filtration since they allow for the precise control of clipped 

frequencies. Due to the relatively low signal levels, filtering is required to eliminate a variety of 

undesired noise signals (1 mV for biomedical engineering like the ECG). The uneven effect size 

between the electrode and the human body, electrical instrument noise in the environment, 

power-line (50/60 Hz), muscle noise, and internal noise during the production of wearable ECG 

devices are the most frequent causes of noise in the ECG signal. In this section, it was explained 

that since heart rate data is delicate, it is crucial to remove power line noise before sending it to 

the computer that will be used to communicate with the end user. 
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Figure 3: Block schematic for Biquade Direct Form Transposed-II 

 

While 𝑋𝐼 and 𝑋𝐽 at time s, represent the samples in outlets i and j. This can also be considered 

while analyzing the Y, 𝑋(𝑠), as well as 𝑌(𝑠), are the input and output, respectively. The 

filter’s 𝐴𝑖  and  𝐵𝑗  (which may vary for every outlet), and Ki ( a collection of interesting factors) 

parameters in equation (1). 

𝐾 = 𝑡𝑎𝑛 (𝜋 × 𝜔)                                                                                                                          (1) 

 

Therefore,𝑤 is a constant 𝑝𝑖 (𝜋) number of 3.141592653 that represents a normalized cut-off 

frequency in equation (2). 

𝑛𝑜𝑟𝑚 = 1

(1 +
𝐾
𝑄

+ 𝐾 × 𝐾)
⁄  

𝑎0=(1+K× 𝐾) × 𝑛𝑜𝑟𝑚                                                                                                                 (2) 

𝑎1=2× (𝑘 × 𝐾 − 1) × 𝑛𝑜𝑟𝑚 

 

The filter coefficients calculated throughout the filtration duration are 𝑎1 and𝑏1. Similar to the 

output signal Y(s) was multiplied by 𝑎1 and 𝑎2. b0 as well as b2 are represented as the feed-

forward coefficients and are said to multiply the input signal 𝑋(𝑆) in equation (3). 

     𝑏2 = (1 −
𝐾

𝑄
+ 𝐾 × 𝐾) × 𝑛𝑜𝑟𝑚                                                                                               (3) 

Q, a quality element has a value of 0.707 in this equation above. As depicted in Figure 3, The 

MCU's method is linearly transposed twice, as seen in equations (4)-(7). 
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𝑌(𝑧)

𝑋(𝑧)
=

𝑏0+𝑏1𝑧−1+𝑏2𝑧−2

1+𝑎1𝑧−1+𝑎2𝑧−1                                                                                                                      (4) 

 

𝑌(𝑛) = 𝑏0𝑥(𝑛) + 𝜔1(n-1)                                                                                                            (5) 

𝜔2(𝑛) = 𝑏1𝑥(𝑛) − 𝑎1y(n)+𝜔2(𝑛 − 1)                                                                                         (6) 

𝜔1(n) = b2x(n) − a2y(n)                                                                                                            (7) 

 

4. Proposed Adaptive Energy-Efficient Algorithm 

A. Database description 

USC-HAD: Data from 12 daily activities performed by 14 participants are included in the USC-

HAD dataset. A motion node that was securely mounted on the subject's right hip was used to 

record the data as they were instructed to walk however they saw fit such as forward, upstairs, 

etc. Three 3-axis sensors—a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer—

combine to form the motion node. 100 Hz continues to be the highest sampling frequency 

(Singh et al, 2020). Table 2 offers an overview of the information along with citations to the 

pertinent sources. 

Table 2: The data set used in experimental and validation research projects 

Database Location 

and type 

of sensor 

Sampling  

freq 

       # 

volunteers 

Sensor placement # Activities 

USC-

HAD 

Motion 

node 

100 HZ 15 The subject's right 

up had a motion 

node tied to it 

using a cellphone. 

Walking, jumping, 

napping, and using 

the elevator are 

among the ten 

physical activities. 

 

B. Adaptive Energy-Efficient Algorithm 

To transmit ECG data across a hardware and software platform, they advise using the adaptive 

energy-efficient transmission power control (AETPC) technique, which they also analyze. 

Transmission power fluctuates due to base station demand (BS) estimates and the dynamic 

wireless channel (TP). In contrast to AETPC, which is only useful in dynamic situations, a 

modification of the adaptive power control method is proposed. While AETPC can be used in 

both static and dynamic situations, there are differences in the power distribution methods for 

each. The traditional TPC methods, such as Gao's, constant TPC, and Xiao's methods, are also 
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contrasted with the proposed AETPC because they ineffectively follow the characteristics and, as 

a result, either forego efficiency savings or channel reliability. The majority of the energy is used 

in control packets and delivering feedback and acknowledge (ACK) information when power 

management algorithms are built using standard methods, such as those proposed by Gao and 

Xiao, which do not account for all channel characteristics. 

 

Constant TPC provides linear direct high power, however, this is not practical because it either 

decreases energy efficiency or dependability. The primary experimental parameters are the 

estimated average of the RSSI samples (RSSI average, 𝑅𝐿𝑜𝑤𝑒𝑠𝑡  ) which is preferred after the most 

recent RSSI sample is lost or dropped at the start of the first transmission; The strengths are the 

2 dbm difference in average weight between a better channel (one with a high RSSI and minimal 

packet drop) and a bad channel (one with a low RSSI and large packet drop). Both the variable 

upper threshold and the average weight of a good channel are 83 dBm. R Goal (85 dbm) has a 

little lower RSSI than RSSI objective in terms of packet loss (85 dbm). To determine and, 

respectively, meet the user's best transmission power level and requirement, AETPC uses an 

adaptive on-demand technique (8)-(9). 

 

�̅� = 𝑅𝑙𝑜𝑤𝑒𝑠𝑡+(1-𝛼1) × �̅�                                                                                                               (8) 

�̅� = 𝑅𝑙𝑜𝑤𝑒𝑠𝑡+(1-𝛼2) × �̅�                                                                                                               (9) 

 

Here, ∆𝑃 indicates the maximum transmission level change and is modified in equation (10) in 

line with the demand of RSSI and variation in the wireless channel. 

 

∆𝑃 = {

2 𝑖𝑓 �̅� < 𝑇𝑅𝐿

−1 𝑖𝑓�̅� > 𝑇𝑅𝐻𝑣𝑎𝑟           

 0 𝑖𝑓 𝑇𝑅𝐿 < �̅� < 𝑇𝑅𝐻𝑣𝑎𝑟           

                                                                                       (10) 

 

Where and are, respectively in equation (11), (12), the standard deviation in 𝜎 dbm along with 

the n number of RSSI samples. 

 

  𝑇𝑅𝐻𝑣𝑎𝑟 = 𝑇𝑅𝐿 +σ                                                                                                                    (11) 

𝜎 = √
1

𝑛
∑ (𝑅𝑖 − 𝑅),̅̅ ̅̅𝑛

𝑖=1 𝑖 = 1,2, … , 𝑛                                                                                           (12) 

When transmission power is spread fairly, communication is more reliable and long-lasting. The 

lowest RSSI 𝑅𝐿𝑜𝑤𝑒𝑠𝑡 is one of the essential components since it guarantees uninterrupted 
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communication between the transmitter and BS nodes. Data transport is hampered and the 

transmission rate is substantially reduced if it is lost. By employing fixed RSSI threshold values, 

traditional constant TPC and other approaches, including those of Gao and Xiao, inadequately 

take into account the dynamic character of the wireless interface. They suggested that uplink 

data is provided linearly as required and that the transmitter node and the BS are both 

monitoring the proposed energy-efficient transmission power control (ETPC). The next TP level 

is chosen and distributed by BS using the average RSSI (�̅� ) of all data samples. 

 

Algorithm 1: Pseudocode for the energy-efficient power control 

Rlatest: (RSSI of recent samples) 

Rlowest: (Samples received after the most recent sample's RSSI) 

Rtarget:( RSSI average value):(RSSI target) 

Stage 1: if Rlatest >R̅ 

Stage 2: R̅ = Rlowest + (1 − α1) × R̅ 

Stage 3: else Rlatest<R̅ 

Stage 4: R̅ = Rlowest + (1 − α2) × R̅ 

Stage 5: end if 

Stage 6: R̅ > TRHvar 

Stage 7: ∆p = {
2 if                   R̅ < 𝑇𝑅𝐿 

−1if             R̅ > TRHvar     

0 if   TRL < R̅ > TRHvar

 

Stage 8: else if {R̅ < TRHvar} 

Stage 9:  ∆p = {
2 if                   R̅ < 𝑇𝑅𝐿 

−1if             R̅ > TRHvar     

0 if   TRL < R̅ > TRHvar

 

Stage 10: else{𝑇𝑅𝐿 ≤ R̅ ≤ TRHvar} 

Stage 11: avoiding action 

Stage 12: end 

The proposed pseudocode for the ETPC approach is shown in Figure 4. The four distinct types of 

thresholds (RSSI) are fixed lower threshold (TLL), variable higher threshold (TRH var), and 

received signal strength indication. 
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Figure 4: samples of RSSI data are transmitted 

 

5. Experimental Results And Discussion 

In our trial, thirty healthy participants participated. To test the patients, the room temperature 

was kept between 21 and 26 °C from 9:00 am to 4:00 pm. This section examines the effects of 

various power line noise filters on the functionality of a wearable platform with a single chip for 

monitoring ECG signals. The three different filter types' potency was evaluated while rectifying 

the ECG signal. Through a full experimental setup on a platform with integrated hardware and 

software, the suggested AETPC and the standard transmission power regulation were also 

contrasted while accounting for combined RSSI along with the value of transmission power. The 

human body's heart rate (HR) was measured in experiments both at rest and while pedaling a 

bicycle. Participants' heart rates rise when using the bike; when they are not using the bike, their 

heart rates gradually return to normal. Human ECG data, which can produce a variety of noise, 

comprising baseline wandering, cabling noise, and AC power line noise, was used to evaluate 

the HR algorithm. When a person was steering or peddling a bike, the human body generated 

the ECG signal that was employed in our experiment. Using an ECG simulator, the signal was 

confirmed and other types of noise were produced. The initial prototype ECG signal was first 

shown on a computer before the ECG device wirelessly transmitted raw data, which was 

afterward acquired via a Bluetooth Low Energy (BLE) dongle device connected to the PC (PC). A 

computer program analyses the ECG after it has been filtered and displayed. The adopted ECG 
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simulator from Fluke, the "Fluke Biomedical 215A Patient Simulator," likewise generates a variety 

of signal artifacts. Since they used common electrodes rather than health electrodes for the 

prototype, the final product will be 4 cm by 4 cm smaller than the prototype, which was 6 cm by 

12 cm in size. They made use of our custom-made wearable ECG equipment and the chest-to-

right hip experimental setup. The resulting real-time ECG data was filtered to remove power-line 

noise and artifacts using hardware notch, HPF, and LPF. The results of these apps were 

compared. To compare the energy efficiency of our new AETPC algorithm to that of traditional 

TPC techniques, average transmit power (AVG TP) was employed. The outcomes demonstrated a 

35.5% gain in energy efficiency using the proposed AETPC algorithm. Additionally, it was 

discovered that the continuous TPC technique was inefficient because it either consumed more 

energy when the channel condition was favorable or decreased dependability when it was 

unfavorable. Additionally, dynamic channel statuses could not be changed. 

 

 

Figure 5: Filtering ECG data at 60 BPM with 60 Hz noise using a notch filter, HPF and LPF 

 

Figure 5 displays the human electrocardiogram signal at a noise level of 60 Hz and 60 beats per 

minute (BPM). The unfiltered ECG signal and the signals that have undergone notch, HPF, and 

LPF are shown in Figures 5a–5d. Each peak ought to occur in a second because the BPM was 60. 

161 and 410, respectively, have been recognized as the first and second peaks computing the 
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various results in 250. Since our rating was 250 samples per second (SPS), they can compute 250 

SPS by multiplying 1 by 250. The two peaks are at 157 and 412 with a notch filter applied a 

differential of 255, and a sample rate of 255 SPS. 

 

 

Figure 6: Filtering of ECG data at 50 Hz noise and 80 BPM. Examples of filters include raw data, 

notch filter, HPF, and LPF 

 

Figure 6 represents the human Electrocardiogram data with a noise level of 50 Hz and 80 bpm. 

In contrast to Figures 6b–6d, which show the filtered data after applying notch, HPF, and LPF, 

respectively, it shows the raw Electrocardiogram signals without any filter procedures. It was 

discovered that the LPF outperformed the notch and HPF and that the notch filter was less 

effective at reducing noise than the HPF. Consequently, the LPF can be used to clean up real-

time heart rate variability data by removing artifacts and power-line noise. 

 

Figure 7 shows the human ECG data at a noise level of 50 Hz and 120 BPM. Figures 7b–7d show 

the filtered data after applying notch, HPF, and LPF, while Figure 11a displays, raw data without 

any sort of filtration. When it came to noise-filtering, they discovered that the HPF functioned 

better than the notch filter and the low-pass filter. The LPF is therefore a useful technique for 

removing artifacts and power-line noise from heart rate variability data in real-time. 
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Figure 7: Filters that can be used to filter raw ECG data at 120 BPM and 50 Hz noise 

 

Figure 8 shows the outcomes of an ECG performed on a human subject at a noise level of 50 Hz 

and 180 BPM. Figures 8b–8d shows the filtered data after applying notch, HPF, and LPF. Figure 

8a shows the raw data that has not been filtered. They found that the (LPF) performed better 

than the notch filter along with the notch filter had lower effectiveness for removing noise. As a 

result, the LPF is a helpful method for reducing artifacts and power-line noise from real-time 

heart rate variability data. 

 

 

Figure 8: Filtering of ECG data at 50 Hz noise and 180 BPM. The filters shown are raw data, a 

notch filter, HPF, and LPF 
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In conclusion, the noise was removed from real-time ECG data at 80, 120, and 160 beats per 

minute utilizing the notch, HPF, and LPF. The ECG signal was shown to degrade more at higher 

BPM values and less at lower BPM values. As shown in Figures 5, 6, 7, and 8, the HPF reduced 

power-line noise levels more effectively than the notch filter and artifacts, while the LPF 

outperformed the other filters.  

 

A. RSSI 

An RSSI that was closer to 0 is stronger, and one that is closer to -100 is weaker. We want your 

RSSI to be as high as it can be for optimum results. We won't likely experience strong Wi-Fi 

bandwidth performance if the RSSI is less than -70 dBm, according to a helpful rule of 

thumb.  Outperforming the outcomes for the currently used methods of H-LSTM (55dbm), MET 

(70 dbm), and GDMM (89 dbm), the proposed strategy obtained 96 dbm. RSSI demonstrates the 

suggested system's excellent performance. Figure 9 depicts a comparison of RSSI values. 

 

 

Figure 9: Comparative Analysis of RSSI 

 

B. Processing time 

The processing times indicate how long it normally takes us to process an application. A 

processing period begins the day we receive an application and concludes when we make a 

choice. The proposed strategy (AETPC) obtained 60 secs, outperforming the results for the 
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already employed methods of H-LSTM (97 secs), MET (80 secs), and GDMM (72 secs). Processing 

time displays the subpar performance of the proposed system. Comparative processing time 

analysis is shown in Figure 10. 

 

Figure 10: Comparative analysis of processing time 

 

C. Transmit power 

The relationship between an access point radio's transmit power and effective range is inverse. A 

signal's transmit power determines how far it can travel and how many obstructions it can pass 

through. The relationship between an access point radio's transmit power and effective range is 

inverse. A signal's transmit power determines how far it can travel and how many obstructions it 

can pass through. The proposed technique (AETPC) achieved 96 dbm in comparison to the 

results for the previously employed methods of H-LSTM (62 dbm), MET (78 dbm), and GDMM 

(84 dbm).Transmit power demonstrates the proposed system's improved performance. Figure 

11 displays a comparative examination of transmit power. 



Vol.29 计算机集成制造系统 ISSN 

No.1 Computer Integrated Manufacturing Systems 1006-5911 

 

Computer Integrated Manufacturing Systems  
290 

 

Figure 11: Comparative analysis of transmit power 

 

D. System efficiency 

In electronics and electrical engineering, a system's efficiency is calculated by dividing its 

useable power output by the entire amount of electrical power it uses (a fractional expression ), 

and is commonly represented by the Greek minuscule letter eta. The proposed strategy (AETPC) 

attained 97% in comparison to the results for the previously employed methods of H-LSTM 

(68%), MET (75%), and GDMM (88%). System efficiency displays the enhanced performance of 

the suggested system. An analysis of system effectiveness in comparison is shown in Figure 12. 

 

 

Figure 12: Comparative analysis of system efficiency 
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6. Discussion  

For sensing and signal processing, the AETPC algorithm is used in wearables and other man-

machine interfaces that support 5G. Long-short hybrid memory (H-LSTM) It is difficult to apply 

the dropout method to solve the overfitting issue with LSTM. Dropout is a regularization 

technique that probabilistically excludes input and recurrent connections from weight and 

activation updates when training a network. Limitations of using the metabolic equivalent of 

task (MET) to gauge the intensity of physical activity or exercise. Not every MET is made equally. 

In other words, not all MET offer the same advantages for health. It is not possible to extract data 

with the same high resolution from high-frequency bands since the wavelet transforms at every 

stage of signal breakdown, only low-frequency bands are broken down. As a result, our 

suggested solution outperforms current methods. 

 

7. Conclusion  

Everyone is experimenting with wearable technologies for smart healthcare, with a particular 

focus on ubiquitous or pervasive sensing. However, their main problem with energy use always 

keeps them from performing to their fullest ability. A wearable wireless electrocardiogram (ECG) 

monitoring system for medical purposes is developed in this study using the analog front end 

(AFE) chip model ADS1292R. The human behavior that is being captured by current datasets is 

not complete. For the research on AETPC, we'll use a larger, more diverse dataset to get a high 

level of recognition accuracy. Our test findings confirm the proposed architecture's potency in 

lowering the system's energy usage.  
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